# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a277076
Showing 1-1 of 1
%I A277076 #12 Sep 08 2022 08:46:17
%S A277076 1,232,260,-5760,6890,7744,33176,-115200,14035,60320,1508,449280,
%T A277076 -380770,-599040,7640,599040,-755943,1598480,1843200,-2620800,-988858,
%U A277076 -2995712,3857360,-1497600,-2004730,7696832,2699684,1670400,-7188480,-11980800,1791400,10736640
%N A277076 Expansion of f(-x)^8 * Q(x) in powers of x where f() is a Ramanujan theta function and Q() is a Ramanujan Lambert series.
%C A277076 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%C A277076 Ramanujan Lambert series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).
%D A277076 Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 329, 2nd equation.
%H A277076 G. C. Greubel, Table of n, a(n) for n = 0..1000
%H A277076 Michael Somos, Introduction to Ramanujan theta functions
%H A277076 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
%F A277076 Expansion of f(-x)^8 * (f(-x)^24 + 256 * x * f(-x^2)^24) / (f(-x) * f(-x^2))^8 in powers of x.
%F A277076 a(n) = b(3*n+1) where b() is multiplicative with b(p^e) = 0^e if p=3 and b(p^e) = b(p)*b(p^(e-1)) - p^7*b(p^(e-2)) otherwise.
%F A277076 G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = 6561 (t/i)^8 f(t) where q = exp(2 Pi i t).
%F A277076 Convolution of A000731 and A004009.
%e A277076 G.f. = 1 + 232*x + 260*x^2 - 5760*x^3 + 6890*x^4 + 7744*x^5 + 33176*x^6 - 115200*x^7 + 14035*x^8 + ...
%e A277076 G.f. = q + 232*q^4 + 260*q^7 - 5760*q^10 + 6890*q^13 + 7744*q^16 + 33176*q^19 - 115200*q^22 + ...
%t A277076 a[ n_] := If[ n < 0, 0, SeriesCoefficient[ QPochhammer[ x]^8 (1 + 240 Sum[ DivisorSigma[ 3, k] x^k, {k, n}]), {x, 0, n}]];
%t A277076 a[ n_] := SeriesCoefficient[ With[ {A1 = QPochhammer[ x]^8, A2 = QPochhammer[ x^2]^8}, A1 (A1^3 + 256 x A2^3) / (A1 A2)], {x, 0, n}];
%o A277076 (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^8 * sum(k=1, n, 240 * sigma(k, 3) * x^k, 1 + A), n))};
%o A277076 (PARI) {a(n) = my(A, A1, A2); if( n<0, 0, A = x * O(x^n); A1 = eta(x + A)^8; A2 = eta(x^2 + A)^8; polcoeff( A1 * (A1^3 + 256 * x * A2^3) / (A1 * A2), n))};
%o A277076 (Magma) A := Basis( CuspForms( Gamma0(9), 8), 95); A[1] + 232*A[4];
%Y A277076 Cf. A000731, A000739, A004009.
%K A277076 sign
%O A277076 0,2
%A A277076 _Michael Somos_, Sep 27 2016
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE