Nothing Special   »   [go: up one dir, main page]

login
Search: a008726 -id:a008726
     Sort: relevance | references | number | modified | created      Format: long | short | data
Rectangular array where row r contains the 8 numbers 4*r^2 - 3*r, 4*r^2 - 2*r, ..., 4*r^2 + 4*r.
+10
14
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 42, 45, 48, 52, 56, 60, 64, 68, 72, 76, 80, 85, 90, 95, 100, 105, 110, 115, 120, 126, 132, 138, 144, 150, 156, 162, 168
OFFSET
0,10
COMMENTS
The numbers in row r span the interval ]8*A000217(r-1), 8*A000217(r)].
The first difference between the entries in row r is r.
Partial sums of floor(n/8). - Philippe Deléham, Mar 26 2013
Apart from the initial zeros, the same as A008726. - Philippe Deléham, Mar 28 2013
a(n+7) is the number of key presses required to type a word of n letters, all different, on a keypad with 8 keys where 1 press of a key is some letter, 2 presses is some other letter, etc., and under an optimal mapping of letters to keys and presses (answering LeetCode problem 3014). - Christopher J. Thomas, Feb 16 2024
FORMULA
From Philippe Deléham, Mar 26 2013: (Start)
a(8k) = A001107(k).
a(8k+1) = A002939(k).
a(8k+2) = A033991(k).
a(8k+3) = A016742(k).
a(8k+4) = A007742(k).
a(8k+5) = A002943(k).
a(8k+6) = A033954(k).
a(8k+7) = A033996(k). (End)
G.f.: x^8/((1-x)^2*(1-x^8)). - Philippe Deléham, Mar 28 2013
a(n) = floor(n/8)*(n-3-4*floor(n/8)). - Ridouane Oudra, Jun 04 2019
a(n+7) = (1/2)*(n+(n mod 8))*(floor(n/8)+1). - Christopher J. Thomas, Feb 13 2024
EXAMPLE
The array starts, with row r=0, as
r=0: 0 0 0 0 0 0 0 0;
r=1: 1 2 3 4 5 6 7 8;
r=2: 10 12 14 16 18 20 22 24;
r=3: 27 30 33 36 39 42 45 48;
MATHEMATICA
Flatten[Table[4r^2+r(Range[-3, 4]), {r, 0, 6}]] (* or *) LinearRecurrence[ {2, -1, 0, 0, 0, 0, 0, 1, -2, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 1, 2}, 60] (* Harvey P. Dale, Nov 26 2015 *)
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
Stuart M. Ellerstein (ellerstein(AT)aol.com), May 21 2006
EXTENSIONS
Redefined as a rectangular tabf array and description simplified by R. J. Mathar, Oct 20 2010
STATUS
approved
Number of subsets of {1,2,...,n} such that no two elements differ by 1, 4, or 5.
+10
13
1, 2, 3, 5, 8, 11, 14, 19, 25, 34, 49, 70, 99, 141, 196, 270, 375, 520, 723, 1014, 1420, 1985, 2777, 3874, 5396, 7526, 10496, 14642, 20449, 28555, 39860, 55647, 77660, 108356, 151214, 211028, 294507, 411071, 573763, 800796, 1117679, 1559895, 2177002
OFFSET
0,2
COMMENTS
a(n) is the number of compositions of n+5 into parts 1, 6, 8, 9, 12, 15, 18, 21, ...
Other sequences related to restricted combinations along with the sets of disallowed differences between subset elements: A000045 {1}, A011973 {1}, A006498 {2}, A006500 {3}, A031923 {4}, A000930 {1,2}, A102547 {1,2}, A130137 {1,3}, A263710 {1,4}, A374737 {1,5}, A079972 {2,3}, A224809 {2,4}, A351873 {3,4}, A224810 {3,6}, A224815 {4,8}, A003269 {1,2,3}, A180184 {1,2,3}, A317669 {1,2,4}, A351874 {1,3,4}, A177485 {1,3,5}, A121832 {2,3,4}, A375982 {2,3,5}, A375983 {2,4,5}, A224808 {2,4,6}, A224814 {3,6,9}, A003520 {1,2,3,4}, A375185 {1,2,3,5}, A375186 {1,2,4,5}, A259278 {2,3,4,5}, A224811 {2,4,6,8}, A005708 {1,2,3,4,5}, A276106 {2,3,4,5,6}, A224812 {2,4,6,8,10}, A005709 {1,2,3,4,5,6}, A322405 {2,3,4,5,6,7}, A224813 {2,4,6,8,10,12}, A005710 {1,2,3,4,5,6,7}, A368244 {2,3,4,5,6,7,8}, A000027 {1,2,..}, A269445 {1,2,..}\{12,25,..}, A008730 {1,2,..}\{11,23,..}, A008729 {1,2,..}\{10,21,..}, A008728 {1,2,..}\{9,19,..}, A008727 {1,2,..}\{8,17,..}, A008726 {1,2,..}\{7,15,..}, A008725 {1,2,..}\{6,13,..}, A038718 {1,..,5,7,..}, A008724 {1,2,..}\{5,11,..}, A008732 {1,2,..}\{4,9,..}, A179999 {1,2,3,5,7,..}, A001972 {1,2,..}\{3,7,..}, A001840 {1,2,..}\{2,5,..}, A052955 {1,3,..}, A004277 {2,3,..}, A186384 {1,2,..}\{1,6,..}, A186347 {1,2,..}\{1,5,..}, A339573 {1,2,..}\{1,4,..}, A002620 {2,4,..}, A019442 {3,4,..}, A006501 {3,6,..}, A008233 {4,8,..}, A008382 {5,10,..}, A008881 {6,12,..}, A009641 {7,14,..}, A009694 {8,16,..}, A009714 {9,18,..}, A354600 {10,20,..}.
[Keyword "less", because this comment should be moved to the Index to the OEIS, it is not appropriate here. - N. J. A. Sloane, Oct 25 2024]
LINKS
Michael A. Allen, Combinations without specified separations, Communications in Combinatorics and Optimization (in press).
FORMULA
a(n) = a(n-1) + a(n-3) - a(n-4) + a(n-6) + a(n-8) - a(n-11) for n >= 11.
G.f.: (1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 - x^8 - x^9 - x^10)/(1 - x - x^3 + x^4 - x^6 - x^8 + x^11).
EXAMPLE
For n = 6, the 14 subsets are {}, {1}, {2}, {3}, {1,3}, {4}, {1,4}, {2,4}, {5}, {2,5}, {3,5}, {6}, {3,6}, {4,6}.
The a(4) = 8 compositions of 9 into parts 1, 6, 8, 9, ... are 1+1+1+1+1+1+1+1+1, 1+1+1+6, 1+1+6+1, 1+6+1+1, 6+1+1+1, 1+8, 8+1, 9.
MATHEMATICA
CoefficientList[Series[(1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 - x^8 - x^9 - x^10)/(1 - x - x^3 + x^4 - x^6 - x^8 + x^11), {x, 0, 42}], x]
LinearRecurrence[{1, 0, 1, -1, 0, 1, 0, 1, 0, 0, -1}, {1, 2, 3, 5, 8, 11, 14, 19, 25, 34, 49}, 42]
CROSSREFS
See comments for other sequences related to restricted combinations.
Cf. A376743.
KEYWORD
easy,nonn,less
AUTHOR
Michael A. Allen, Sep 04 2024
STATUS
approved
Molien series for 3-dimensional group [2,n ] = *22n.
+10
9
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210, 217, 224, 231, 238
OFFSET
0,2
COMMENTS
a(n) = A179052(n) for n < 100. - Reinhard Zumkeller, Jun 27 2010
FORMULA
G.f.: 1/((1-x)^2*(1-x^10)).
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+10} floor(j/10).
a(n-10) = (1/2)*floor(n/10)*(2*n - 8 - 10*floor(n/10)). (End)
MAPLE
g:= 1/((1-x)^2*(1-x^10)); gser:= series(g, x=0, 72); seq(coeff(gser, x, n), n=0..70); # modified by G. C. Greubel, Jul 30 2019
MATHEMATICA
CoefficientList[Series[1/((1-x)^2(1-x^10)), {x, 0, 70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
PROG
(PARI) my(x='x+O('x^70)); Vec(1/((1-x)^2*(1-x^10))) \\ G. C. Greubel, Jul 30 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^10)) )); // G. C. Greubel, Jul 30 2019
(Sage) (1/((1-x)^2*(1-x^10))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019
(GAP) a:=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14];; for n in [13..70] do a[n]:=2*a[n-1]-a[n-2]+a[n-10]-2*a[n-11]+a[n-12]; od; a; # G. C. Greubel, Jul 30 2019
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010
STATUS
approved
Molien series for 3-dimensional group [2,n] = *22n.
+10
5
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 196, 203, 210, 217, 224, 231, 238, 245, 252
OFFSET
0,2
COMMENTS
Number of partitions of n into two kinds of 1's and one kind of 9. - Joerg Arndt, Dec 27 2014
FORMULA
G.f.: 1/((1-x)^2*(1-x^9)).
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+9} floor(j/9).
a(n-9) = (1/2)*floor(n/9)*(2*n - 7 - 9*floor(n/9)). (End)
MAPLE
seq(coeff(series(1/((1-x)^2*(1-x^9)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Sep 09 2019
MATHEMATICA
Drop[Accumulate[Floor[Range[70]/9]], 8] (* Jean-François Alcover, Mar 27 2013 *)
CoefficientList[Series[1/(1-x)^2/(1-x^9), {x, 0, 70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
LinearRecurrence[{2, -1, 0, 0, 0, 0, 0, 0, 1, -2, 1}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13}, 120] (* Harvey P. Dale, Feb 13 2022 *)
PROG
(PARI) Vec(1/(1-x)^2/(1-x^9)+O(x^66)) /* Joerg Arndt, Mar 27 2013 */
(Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^9)) )); // G. C. Greubel, Sep 09 2019
(Sage)
def A008727_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(1/((1-x)^2*(1-x^9))).list()
A008727_list(70) # G. C. Greubel, Sep 09 2019
(GAP) a:=[1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13];; for n in [12..70] do a[n]:=2*a[n-1]-a[n-2]+a[n-9]-2*a[n-10]+a[n-11]; od; a; # G. C. Greubel, Sep 09 2019
KEYWORD
nonn,easy
STATUS
approved
Molien series 1/((1-x)^2*(1-x^12)) for 3-dimensional group [2,n] = *22n.
+10
3
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 186, 192, 198, 204
OFFSET
0,2
FORMULA
G.f. 1/( (1-x)^3 * (1+x) *(1+x+x^2) *(1-x+x^2) * (1+x^2) *(1-x^2+x^4)). - R. J. Mathar, Aug 11 2021
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+12} floor(j/12).
a(n-12) = (1/2)*floor(n/12)*(2*n - 10 - 12*floor(n/12)). (End)
a(n) = A221912(n+12). - Philippe Deléham, Apr 03 2013
EXAMPLE
..1....2....3....4....5....6....7....8....9...10...11...12
.14...16...18...20...22...24...26...28...30...32...34...36
.39...42...45...48...51...54...57...60...63...66...69...72
.76...80...84...88...92...96..100..104..108..112..116..120
125..130..135..140..145..150..155..160..165..170..175..180
186..192..198..204..210..216..222..228..234..240..246..252
259..266..273..280..287..294..301..308..315..322..329..336
344..352..360..368..376..384..392..400..408..416..424..432
441..450..459..468..477..486..495..504..513..522..531..540
550..560..570..580..590..600..610..620..630..640..650..660
...
- Philippe Deléham, Apr 03 2013
MAPLE
seq(coeff(series(1/(1-x)^2/(1-x^12), x, n+1), x, n), n=0..80);
MATHEMATICA
CoefficientList[Series[1/((1-x)^2*(1-x^12)), {x, 0, 70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
LinearRecurrence[{2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -2, 1}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16}, 70] (* Harvey P. Dale, Jan 01 2024 *)
PROG
(PARI) my(x='x+O('x^70)); Vec(1/((1-x)^2*(1-x^12))) \\ G. C. Greubel, Jul 30 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^12)) )); // G. C. Greubel, Jul 30 2019
(Sage) (1/((1-x)^2*(1-x^12))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019
KEYWORD
nonn,tabf,easy
EXTENSIONS
More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010
STATUS
approved

Search completed in 0.008 seconds