OFFSET
0,2
COMMENTS
First differences are A008621. - Amarnath Murthy, Apr 26 2004
a(n) = least k > a(n-1) such that k + a(n-1) + a(n-2) + a(n-3) is triangular. - Amarnath Murthy, Apr 26 2004
From Jon Perry, Nov 16 2010: (Start)
Column sums of the following array:
1 2 3 4 5 6 7 8 9...
1 2 3 4 5...
1...
--------------------
1 2 3 4 6 8 10 12 15 (End)
A001972(n) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and 2=4x+y. - Clark Kimberling, Jun 04 2012
Number of partitions of n into parts 1 (of two sorts) and 4 (of one sort). - Joerg Arndt, Aug 08 2013
In the polynomial sequence s(n) = (x*s(n-1)*s(n-4) + y*s(n-2)*s(n-3))/s(n-5), with s(k) = 1 for k = 0..4, the leading term of s(n+5) is x^a(n). See A333260. - Michael Somos, Mar 13 2020
REFERENCES
A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. [Annotated scanned copy]
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 208
Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.
Brian O'Sullivan and Thomas Busch, Spontaneous emission in ultra-cold spin-polarised anisotropic Fermi seas, arXiv 0810.0231v1 [quant-ph], 2008. [Eq 8a, lambda=4]
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1).
FORMULA
From Michael Somos, Apr 21 2000: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) + 1.
a(n) = floor((n+3)^2/8). (End)
a(n) = Sum_{k=0..n} floor((k+4)/4) = n + 1 + Sum_{k=0..n} floor(k/4). - Paul Barry, Aug 19 2003
a(n) = a(n-4) + n + 1. - Paul Barry, Jul 14 2004
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+4} floor(j/4);
a(n-4) = (1/2)*floor(n/4)*(2*n - 2 - 4*floor(n/4)). (End)
A002620(n+1) = a(2*n-1)/2.
A000217(n+1) = a(2*n).
a(n)+a(n+1)+a(n+2)+a(n+3) = (n+4)*(n+5)/2. - Amarnath Murthy, Apr 26 2004
a(n) = n^2/8 + 3*n/4 + 15/16 + (-1)^n/16 + A056594(n+3)/4. - Amarnath Murthy, Apr 26 2004
a(n) = A130519(n+4). - Franklin T. Adams-Watters, Jul 10 2009
a(n) = floor((n+1)/(1-e^(-8/(n+1)))). - Richard R. Forberg, Aug 07 2013
a(n) = a(-6-n) for all n in Z. - Michael Somos, Mar 13 2020
E.g.f.: ((8 + 7*x + x^2)*cosh(x) + 2*sin(x) + (7 + 7*x + x^2)*sinh(x))/8. - Stefano Spezia, May 09 2023
MAPLE
A001972:=-(2-z+z**3-2*z**4+z**5)/(z+1)/(z**2+1)/(z-1)**3; # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence except for the initial 1
MATHEMATICA
CoefficientList[Series[1/((1-x)^2(1-x^4)), {x, 0, 80}], x] (* Harvey P. Dale, Mar 27 2011 *)
PROG
(PARI) a(n)=(n+3)^2\8;
(Magma) [Floor((n+3)^2/8): n in [0..60]]; // Vincenzo Librandi, Aug 15 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Partially edited by R. J. Mathar, Jul 11 2009
STATUS
approved