editing
proposed
editing
proposed
editing
proposed
editing
proposed
Let T(x) = 1/(1 - 4*x)^(1/4) be the e.g.f. for the sequence of triple factorial numbers A007696. Then the e.g.f. A(x) for the quintuple factorial numbers satisfies T( int Integral_{t = 0..x} A(t) dt ) = A(x). Cf. A007559 and A007696. - Peter Bala, Jan 02 2015
approved
editing
a(1) = 1; a(n) = 2*(2*n-1)*a(n-1)* - (2*(2n-1) - (2nn-3)!/(n-1)!.
a(n) = n!*Sum_{k=1..n} (binomial(2*n-k-1, n-k)/k). - Vladimir Kruchinin, Mar 17 2016
From _Peter Bala, Mar 07 2025: (Start)
a(n+1) = - (2*n+1)!^2/n!^3 * Integral_{x = 0..1} log(x)*x^n*(1 - x)^n = (2*n+1)!^2/n!^3 * Sum_{k = 0..n} (-1)^k * binomial(n, k)/(n+k+1)^2.
(n-1)*a(n) = 2*(4*n^2-10*n+7)*a(n-1) - 4*(n-2)*(2*n-3)^2*a(n-2) with a(1) = 1, a(2) = 5. (End)
a(3) = 3! *(1 + (1 + (1 + 1/2)) + (1 + (1 + 1/2) + (1 + 1/2 + 1/3))) = 47.
a := proc(n) option remember; if n = 1 then 1 else 2*(2*n-1)*a(n-1) - (2*n-3)!/(n-1)! fi; end:
seq(a(n), n = 1..20); # Peter Bala, Mar 07 2025
approved
editing
Let T(x) = 1/(1 - 3*x)^(1/3) be the e.g.f. for the sequence of triple factorial numbers A007559. Then the e.g.f. A(x) for the quartic factorial numbers satisfies T(int_Integral_{t = 0..x} A(t) dt) = A(x). (Cf. A007559 and A008548.) - Peter Bala, Jan 02 2015
nonn,easy
approved
editing
editing
proposed
editing
proposed
editing
proposed
editing
proposed