proposed
approved
proposed
approved
editing
proposed
Andrew Howroyd, <a href="/A335362/b335362.txt">Table of n, a(n) for n = 1..1275</a> (first 50 rows).
1, 1, 1, 1, 2, 3, 2, 5, 10, 8, 3, 12, 32, 40, 27, 6, 30, 99, 178, 187, 91, 11, 74, 298, 692, 1019, 854, 350, 23, 188, 890, 2538, 4751, 5692, 4074, 1376, 47, 478, 2627, 8886, 20260, 31188, 31856, 19602, 5743, 106, 1235, 7734, 30270, 81170, 152509, 200413, 177266, 96035, 24635
Andrew Howroyd, <a href="/A335362/b335362.txt">Table of n, a(n) for n = 1..1275</a>
(PARI) \\ Here R(n) is rooted mixed trees as g.f.
EulerMTS(p)={my(n=serprec(p, x)-1, vars=variables(p)); exp(sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i))}
R(n) = {my(p=x+O(x^2)); for(n=2, n, p=x*EulerMTS(2*y*p + p)); p}
T(n) = {my(p=R(n)); [Vecrev(p) | p<-Vec(p + (subst(subst(p + O(x*x^(n\2)), x, x^2), y, y^2) - (2*y+1)*p^2)/2)]}
{ my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Mar 23 2023
Terms a(46) and beyond from Andrew Howroyd, Mar 23 2023
approved
editing
editing
approved
editing
proposed
The generating function of the first subdiagonal A(x) = x^2 +2x^3 +10x^4 +40x^5 +187x^6 +... = (B(x)^2+B(x^2))/2, where B(x) is the g.f. of A000151. - R. J. Mathar, Jun 04 2020
approved
editing
editing
approved
1, 1, 1, 1, 2, 3, 2, 5, 10, 8, 3, 12, 32, 40, 27, 6, 30, 99, 178, 187, 91, 11, 74, 298, 692, 1019, 854, 350, 23, 188, 890, 2538, 4751, 5692, 4074, 1376, 47, 478, 2627, 8886, 20260, 31188, 31856, 19602, 5743
Completed row n=9. - R. J. Mathar, Jun 11 2020
approved
editing