Nothing Special   »   [go: up one dir, main page]

login
Revision History for A335362 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Triangle T(n,d) read by rows: the number of mixed trees with n>=1 nodes and 0<=d<n arcs.
(history; published version)
#22 by Alois P. Heinz at Thu Mar 23 19:51:26 EDT 2023
STATUS

proposed

approved

#21 by Andrew Howroyd at Thu Mar 23 19:44:11 EDT 2023
STATUS

editing

proposed

#20 by Andrew Howroyd at Thu Mar 23 19:37:51 EDT 2023
LINKS

Andrew Howroyd, <a href="/A335362/b335362.txt">Table of n, a(n) for n = 1..1275</a> (first 50 rows).

#19 by Andrew Howroyd at Thu Mar 23 19:37:25 EDT 2023
DATA

1, 1, 1, 1, 2, 3, 2, 5, 10, 8, 3, 12, 32, 40, 27, 6, 30, 99, 178, 187, 91, 11, 74, 298, 692, 1019, 854, 350, 23, 188, 890, 2538, 4751, 5692, 4074, 1376, 47, 478, 2627, 8886, 20260, 31188, 31856, 19602, 5743, 106, 1235, 7734, 30270, 81170, 152509, 200413, 177266, 96035, 24635

LINKS

Andrew Howroyd, <a href="/A335362/b335362.txt">Table of n, a(n) for n = 1..1275</a>

PROG

(PARI) \\ Here R(n) is rooted mixed trees as g.f.

EulerMTS(p)={my(n=serprec(p, x)-1, vars=variables(p)); exp(sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i))}

R(n) = {my(p=x+O(x^2)); for(n=2, n, p=x*EulerMTS(2*y*p + p)); p}

T(n) = {my(p=R(n)); [Vecrev(p) | p<-Vec(p + (subst(subst(p + O(x*x^(n\2)), x, x^2), y, y^2) - (2*y+1)*p^2)/2)]}

{ my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Mar 23 2023

EXTENSIONS

Terms a(46) and beyond from Andrew Howroyd, Mar 23 2023

STATUS

approved

editing

#18 by R. J. Mathar at Mon Jun 15 06:59:05 EDT 2020
STATUS

editing

approved

#17 by R. J. Mathar at Mon Jun 15 06:59:01 EDT 2020
CROSSREFS

Cf. A000055 (column d=0), A000238 (diagonal d=n-1), A000106 (column d=1), A006965 (row sums), A335601 (diagonal subdiagonal d=n-2).

STATUS

proposed

editing

#16 by Joerg Arndt at Mon Jun 15 06:27:12 EDT 2020
STATUS

editing

proposed

#15 by R. J. Mathar at Mon Jun 15 06:26:25 EDT 2020
FORMULA

The generating function of the first subdiagonal A(x) = x^2 +2x^3 +10x^4 +40x^5 +187x^6 +... = (B(x)^2+B(x^2))/2, where B(x) is the g.f. of A000151. - R. J. Mathar, Jun 04 2020

CROSSREFS

Cf. A000055 (column d=0), A000238 (diagonal n=d+=n-1), A000106 (column d=1), A006965 (row sums), A335601 (diagonal d=n-2).

STATUS

approved

editing

#14 by R. J. Mathar at Thu Jun 11 07:50:09 EDT 2020
STATUS

editing

approved

#13 by R. J. Mathar at Thu Jun 11 07:35:12 EDT 2020
DATA

1, 1, 1, 1, 2, 3, 2, 5, 10, 8, 3, 12, 32, 40, 27, 6, 30, 99, 178, 187, 91, 11, 74, 298, 692, 1019, 854, 350, 23, 188, 890, 2538, 4751, 5692, 4074, 1376, 47, 478, 2627, 8886, 20260, 31188, 31856, 19602, 5743

EXTENSIONS

Completed row n=9. - R. J. Mathar, Jun 11 2020

STATUS

approved

editing