(MAGMAMagma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2/(7*Sqrt(1-4*x) -5) )); // G. C. Greubel, May 05 2019
(MAGMAMagma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2/(7*Sqrt(1-4*x) -5) )); // G. C. Greubel, May 05 2019
editing
approved
a(n) ~ 5 * 7^(2*n) / 6^(n+1). - Vaclav Kotesovec, Nov 29 2021
approved
editing
proposed
approved
editing
proposed
a(16) corrected by G. C. Greubel, May 05 2019
proposed
editing
editing
proposed
GExpansion of g.f.: 1/(1 - 7*x*c(x)), where c(x) is the g.f. for A000108.
1, 7, 56, 455, 3710, 30282, 247254, 2019087, 16488710, 134656130, 1099686056, 8980749862, 73342721956, 598965319960, 4891549246290, 39947649057855, 3262391226611830, 326239122661830, 2664286127154330, 21758336553841440, 177693081299126610
G. C. Greubel, <a href="/A126694/b126694.txt">Table of n, a(n) for n = 0..1000</a>
CoefficientList[Series[2/(-5+7*Sqrt[1-4*x]), {x, 0, 30}], x] (* G. C. Greubel, May 05 2019 *)
(PARI) my(x='x+O('x^30)); Vec(2/(7*sqrt(1-4*x) -5)) \\ G. C. Greubel, May 05 2019
(MAGMA) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2/(7*Sqrt(1-4*x) -5) )); // G. C. Greubel, May 05 2019
(Sage) (2/(7*sqrt(1-4*x) -5)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 05 2019
approved
editing
proposed
approved
editing
proposed