editing
approved
editing
approved
editing
approved
<a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (204,-1190,204,-1).
2*a(n) = A001109(n+1) + A097731(n) + 6*A097731(n-1). - R. J. Mathar, Jan 31 2024
nonn,easy
approved
editing
(MAGMAMagma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+3*x^3-17*x^2-99*x)/((x^2-6*x+1)*(x^2-198*x+1)))); // G. C. Greubel, Jul 15 2018
proposed
approved
editing
proposed
G. C. Greubel, <a href="/A111647/b111647.txt">Table of n, a(n) for n = 0..434</a>
2*a(n) = A001109(3n3*n+1) + A001109(n+1); e.g., 2*99*169*239 = 7997214+204.
a(n) = sqrt(A011900(2n2*n)*A046090(2n2*n)*A001109(2n2*n+1)); e.g., 20213 = sqrt(493*697*1189).
a(n) = A001541(3n3*n) + 2*A001109(n)*A001541(n-1)*A001541(n); e.g., 105=99+2*1*1*3; 3998709=3880899+2*35*17*99.
For n>0, a(n) = A001652(3n3*n) - A053141(2n2*n)*A002315(n-1) - A001652(n-1); e.g., 105=119-14*1-0; 3998709=4684659-16730*41-20.
G.f.: (1+3*x^3-17*x^2-99*x)/((x^2-6*x+1)*(x^2-198*x+1)). [- Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009]
CoefficientList[Series[(1+3*x^3-17*x^2-99*x)/((x^2-6*x+1)*(x^2-198*x+1)), {x, 0, 30}], x] (* G. C. Greubel, Jul 15 2018 *)
(PARI) x='x+O('x^30); Vec((1+3*x^3-17*x^2-99*x)/((x^2-6*x+1)*(x^2-198*x+1))) \\ G. C. Greubel, Jul 15 2018
(MAGMA) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+3*x^3-17*x^2-99*x)/((x^2-6*x+1)*(x^2-198*x+1)))); // G. C. Greubel, Jul 15 2018
approved
editing
proposed
approved
editing
proposed