reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
if (x^n + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1).is_irreducible(): print() # Lucas A. Brown, Dec 07 2022
for n in count(108):
Any subsequent terms are > 10^6. - Lucas A. Brown, Dec 07 2022
10, 12, 15, 18, 25, 31, 34, 52, 55, 57, 127, 172, 220, 300, 393, 492, 772, 807, 972, 1023, 1266, 1564, 2220, 2242, 3585, 5314, 7306, 8719, 10777, 23647, 26119, 33127, 48036, 48945, 59172, 68841, 131071, 214780, 236892, 265857, 341841, 563599, 841444, 901057
(SageMath) P.<x> = GF(2)[]
from itertools import count
for n in count(10):
print('\b'*42, n, end='', flush=True)
if (x^n + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1).is_irreducible(): print() # Lucas A. Brown, Dec 07 2022
nonn,morehard
a(26)-a(44) from Lucas A. Brown, Dec 07 2022
approved
editing
editing
approved
Do[ If[ ToString[ Factor[ x^n + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1, Modulus -> 2 ] ] == ToString[ x^n + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 ], Print[ n ] ], {n, 0, 700} ]
proposed
editing
editing
proposed