Nothing Special   »   [go: up one dir, main page]

login
Revision History for A039837 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Number of partitions satisfying cn(0,5) <= cn(1,5) and cn(0,5) <= cn(4,5).
(history; published version)
#10 by Joerg Arndt at Fri Oct 11 06:55:54 EDT 2024
STATUS

reviewed

approved

#9 by Alois P. Heinz at Fri Oct 11 06:32:22 EDT 2024
STATUS

proposed

reviewed

#8 by Jean-François Alcover at Fri Oct 11 04:52:57 EDT 2024
STATUS

editing

proposed

#7 by Jean-François Alcover at Fri Oct 11 04:48:07 EDT 2024
DATA

1, 1, 2, 3, 5, 6, 10, 13, 19, 25, 35, 45, 62, 79, 105, 136, 176, 223, 288, 361, 462, 575, 725, 899, 1123, 1388, 1715, 2108, 2592, 3160, 3872, 4694, 5712, 6905, 8348, 10059, 12101, 14514, 17397, 20774, 24822, 29518, 35131, 41664, 49378, 58416, 68982, 81341, 95810, 112595, 132299, 155027, 181623, 212345, 248042

OFFSET

1,2

0,3

MATHEMATICA

okQ[p_] := Module[{c},

c[k_] := c[k] = Count[Mod[p, 5], k];

c[0] <= c[1] && c[0] <= c[4]];

a[n_] := a[n] = Count[okQ /@ IntegerPartitions[n], True];

Table[Print[n, " ", a[n]]; a[n], {n, 0, 54}] (* Jean-François Alcover, Oct 11 2024 *)

EXTENSIONS

a(0)=1 prepended by Jean-François Alcover, Oct 11 2024

STATUS

approved

editing

#6 by Russ Cox at Fri Mar 30 17:20:56 EDT 2012
AUTHOR

Olivier Gerard (olivier.gerard(AT)gmail.com)

Olivier Gérard

Discussion
Fri Mar 30
17:20
OEIS Server: https://oeis.org/edit/global/117
#5 by N. J. A. Sloane at Fri Jan 09 03:00:00 EST 2009
KEYWORD

nonn,new

nonn

AUTHOR

Olivier Gerard (ogerardolivier.gerard(AT)ext.jussieugmail.frcom)

#4 by N. J. A. Sloane at Sat Jun 12 03:00:00 EDT 2004
NAME

Partitions Number of partitions satisfying cn(0,5) <= cn(1,5) and cn(0,5) <= cn(4,5).

KEYWORD

nonn,new

nonn

#3 by N. J. A. Sloane at Fri May 16 03:00:00 EDT 2003
KEYWORD

nonn,part,new

nonn

AUTHOR

Olivier Gerard (ogerard@(AT)ext.jussieu.fr)

#2 by N. J. A. Sloane at Mon May 08 03:00:00 EDT 2000
COMMENTS

For a given partition cn(i,n) means: the number of its parts equal to i modulo n.

KEYWORD

nonn,part,new

#1 by N. J. A. Sloane at Sat Dec 11 03:00:00 EST 1999
NAME

Partitions satisfying cn(0,5) <= cn(1,5) and cn(0,5) <= cn(4,5).

DATA

1, 2, 3, 5, 6, 10, 13, 19, 25, 35, 45, 62, 79, 105, 136, 176, 223, 288, 361, 462, 575, 725, 899, 1123, 1388, 1715, 2108, 2592, 3160, 3872, 4694, 5712, 6905, 8348, 10059, 12101, 14514, 17397, 20774, 24822, 29518, 35131, 41664, 49378, 58416

OFFSET

1,2

COMMENTS

For a given partition cn(i,n) means: the number of its parts equal to i modulo n.

Short: 0 <= 1 and 0 <= 4 (AA).

KEYWORD

nonn,part

AUTHOR

Olivier Gerard (ogerard@ext.jussieu.fr)

STATUS

approved