reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
1, 1, 2, 3, 5, 6, 10, 13, 19, 25, 35, 45, 62, 79, 105, 136, 176, 223, 288, 361, 462, 575, 725, 899, 1123, 1388, 1715, 2108, 2592, 3160, 3872, 4694, 5712, 6905, 8348, 10059, 12101, 14514, 17397, 20774, 24822, 29518, 35131, 41664, 49378, 58416, 68982, 81341, 95810, 112595, 132299, 155027, 181623, 212345, 248042
1,2
0,3
okQ[p_] := Module[{c},
c[k_] := c[k] = Count[Mod[p, 5], k];
c[0] <= c[1] && c[0] <= c[4]];
a[n_] := a[n] = Count[okQ /@ IntegerPartitions[n], True];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 54}] (* Jean-François Alcover, Oct 11 2024 *)
a(0)=1 prepended by Jean-François Alcover, Oct 11 2024
approved
editing
Olivier Gerard (olivier.gerard(AT)gmail.com)
nonn,new
nonn
Olivier Gerard (ogerardolivier.gerard(AT)ext.jussieugmail.frcom)
Partitions Number of partitions satisfying cn(0,5) <= cn(1,5) and cn(0,5) <= cn(4,5).
nonn,new
nonn
nonn,part,new
nonn
Olivier Gerard (ogerard@(AT)ext.jussieu.fr)
For a given partition cn(i,n) means: the number of its parts equal to i modulo n.
nonn,part,new
Partitions satisfying cn(0,5) <= cn(1,5) and cn(0,5) <= cn(4,5).
1, 2, 3, 5, 6, 10, 13, 19, 25, 35, 45, 62, 79, 105, 136, 176, 223, 288, 361, 462, 575, 725, 899, 1123, 1388, 1715, 2108, 2592, 3160, 3872, 4694, 5712, 6905, 8348, 10059, 12101, 14514, 17397, 20774, 24822, 29518, 35131, 41664, 49378, 58416
1,2
For a given partition cn(i,n) means: the number of its parts equal to i modulo n.
Short: 0 <= 1 and 0 <= 4 (AA).
nonn,part
Olivier Gerard (ogerard@ext.jussieu.fr)
approved