Nothing Special   »   [go: up one dir, main page]

login
Revision History for A006203 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Discriminants of imaginary quadratic fields with class number 3 (negated).
(history; published version)
#46 by Charles R Greathouse IV at Sun Feb 16 08:32:29 EST 2025
LINKS

Eric Weisstein's World of Mathematics, <a href="httphttps://mathworld.wolfram.com/ClassNumber.html">Class Number.</a>

Discussion
Sun Feb 16
08:32
OEIS Server: https://oeis.org/edit/global/3014
#45 by Joerg Arndt at Mon May 16 02:09:01 EDT 2022
STATUS

proposed

approved

#44 by Michel Marcus at Mon May 16 00:16:12 EDT 2022
STATUS

editing

proposed

#43 by Michel Marcus at Mon May 16 00:16:07 EDT 2022
REFERENCES

Lubelski S. 1936 Zur Reduzibilitat von Polynomen in Kongruenzentheorie. Acta Arithmetica 1 pp. 169-183.

LINKS

S. Lubelski, <a href="https://doi.org/10.4064/aa-1-2-169-183">Zur Reduzibilität von Polynomen in Kongruenzentheorie</a>, Acta Arithmetica 1 (1935) pp. 169-183.

Pieter Moree and Armand Noubissie, <a href="https://arxiv.org/abs/2205.06685">Higher Reciprocity Laws and Ternary Linear Recurrence Sequences</a>, arXiv:2205.06685 [math.NT], 2022. See p. 4.

STATUS

approved

editing

#42 by Alois P. Heinz at Fri Mar 01 15:52:27 EST 2019
STATUS

proposed

approved

#41 by G. C. Greubel at Fri Mar 01 15:51:49 EST 2019
STATUS

editing

proposed

#40 by G. C. Greubel at Fri Mar 01 15:51:42 EST 2019
PROG

(Sage) [n for n in (1..1000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==3] # G. C. Greubel, Mar 01 2019

CROSSREFS

Cf. A191410.

STATUS

approved

editing

#39 by Alois P. Heinz at Fri Jul 20 17:43:18 EDT 2018
STATUS

proposed

approved

#38 by Andrew Howroyd at Fri Jul 20 16:58:05 EDT 2018
STATUS

editing

proposed

#37 by Andrew Howroyd at Fri Jul 20 16:58:00 EDT 2018
PROG

(PARI) ok(n)={isfundamental(-n) && quadclassunit(-n).no == 3} \\ Andrew Howroyd, Jul 20 2018