Nothing Special   »   [go: up one dir, main page]

login
A362393
E.g.f. satisfies A(x) = exp(x + x^4 * A(x)).
4
1, 1, 1, 1, 25, 241, 1441, 6721, 87361, 1729729, 24816961, 270452161, 3705324481, 85344916801, 1992230175937, 38047293910081, 709217112938881, 17385498239168641, 514103858592923521, 14254662916125735553, 366807994235438359681, 10338786602768939575681
OFFSET
0,5
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp(x - LambertW(-x^4 * exp(x))) = -LambertW(-x^4 * exp(x))/x^4.
a(n) = n! * Sum_{k=0..floor(n/4)} (k+1)^(n-3*k-1) / (k! * (n-4*k)!).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-x^4*exp(x)))))
CROSSREFS
Cf. A362431.
Sequence in context: A278849 A294290 A352304 * A107943 A125388 A126546
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 20 2023
STATUS
approved