OFFSET
0,14
LINKS
Seiichi Manyama, Antidiagonals n = 0..139, flattened
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f. A_k(x) of column k satisfies A_k(x) = exp(x - k*x^2/2 * A_k(x)).
A_k(x) = exp(x - LambertW(k*x^2/2 * exp(x))).
A_k(x) = 2 * LambertW(k*x^2/2 * exp(x))/(k*x^2) for k > 0.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 0, -1, -2, -3, -4, -5, ...
1, -5, -11, -17, -23, -29, -35, ...
1, -14, -11, 10, 49, 106, 181, ...
1, 56, 381, 976, 1841, 2976, 4381, ...
1, 736, 2461, 3736, 3121, -824, -9539, ...
PROG
(PARI) T(n, k) = n! * sum(j=0, n\2, (-k/2)^j*(j+1)^(n-j-1)/(j!*(n-2*j)!));
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Apr 20 2023
STATUS
approved