Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277020
Unary-binary representation of Stern polynomials: a(n) = A156552(A260443(n)).
10
0, 1, 2, 5, 4, 13, 10, 21, 8, 45, 26, 93, 20, 109, 42, 85, 16, 173, 90, 477, 52, 957, 186, 733, 40, 749, 218, 1501, 84, 877, 170, 341, 32, 685, 346, 3549, 180, 12221, 954, 7133, 104, 14269, 1914, 49021, 372, 28605, 1466, 5853, 80, 5869, 1498, 30685, 436, 61373, 3002, 23517, 168, 12013, 1754, 24029, 340, 7021, 682, 1365
OFFSET
0,3
COMMENTS
Sequence encodes Stern polynomials (see A125184, A260443) with "unary-binary method" where any nonzero coefficient c > 0 is encoded as a run of c 1-bits, separated from neighboring 1-runs by exactly one zero (this follows because A260442 is a subsequence of A073491). See the examples.
Terms which are not multiples of 4 form a subset of A003754, or in other words, each term is 2^k * {a term from a certain subsequence of A247648}, which subsequence remains to be determined.
FORMULA
a(n) = A156552(A260443(n)).
Other identities. For all n >= 0:
A087808(a(n)) = n.
A000120(a(n)) = A002487(n).
a(2n) = 2*a(n).
a(2^n) = 2^n.
a(A000225(n)) = A002450(n).
EXAMPLE
n Stern polynomial Encoded as a(n)
"unary-binary" number (-> decimal)
----------------------------------------------------------------
0 B_0(x) = 0 "0" 0
1 B_1(x) = 1 "1" 1
2 B_2(x) = x "10" 2
3 B_3(x) = x + 1 "101" 5
4 B_4(x) = x^2 "100" 4
5 B_5(x) = 2x + 1 "1101" 13
6 B_6(x) = x^2 + x "1010" 10
7 B_7(x) = x^2 + x + 1 "10101" 21
8 B_8(x) = x^3 "1000" 8
9 B_9(x) = x^2 + 2x + 1 "101101" 45
PROG
(Scheme)
(define (A277020 n) (A156552 (A260443 n)))
;; Another implementation, more practical to run:
(define (A277020 n) (list_of_numbers_to_unary_binary_representation (A260443as_index_lists n)))
(definec (A260443as_index_lists n) (cond ((zero? n) (list)) ((= 1 n) (list 1)) ((even? n) (cons 0 (A260443as_index_lists (/ n 2)))) (else (add_two_lists (A260443as_index_lists (/ (- n 1) 2)) (A260443as_index_lists (/ (+ n 1) 2))))))
(define (add_two_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (add_two_lists nums2 nums1)) (else (map + nums1 (append nums2 (make-list (- len1 len2) 0)))))))
(define (list_of_numbers_to_unary_binary_representation nums) (let loop ((s 0) (nums nums) (b 1)) (cond ((null? nums) s) (else (loop (+ s (* (A000225 (car nums)) b)) (cdr nums) (* (A000079 (+ 1 (car nums))) b))))))
CROSSREFS
Cf. A087808 (a left inverse), A156552, A260443, A277189 (odd bisection).
Sequence in context: A256464 A111681 A073122 * A084410 A338073 A080067
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Oct 07 2016
STATUS
approved