OFFSET
0,1
COMMENTS
LINKS
G. E. Andrews, The number of smallest parts in the partitions of n
G. E. Andrews, F. G. Garvan, and J. Liang, Combinatorial interpretation of congruences for the spt-function
K. C. Garrett, C. McEachern, T. Frederick, O. Hall-Holt, Fast computation of Andrews' smallest part statistic and conjectured congruences, Discrete Applied Mathematics, 159 (2011), 1377-1380.
F. G. Garvan, Congruences for Andrews' smallest parts partition function and new congruences for Dyson's rank
F. G. Garvan, Congruences for Andrews' spt-function modulo 32760 and extension of Atkin's Hecke-type partition congruences, arXiv:1011.1957 [math.NT], 2010.
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0 || i==1, n, {q, r} = QuotientRemainder[n, i]; If[r == 0, q, 0] + Sum[b[n - i*j, i - 1], {j, 0, n/i}]];
spt[n_] := b[n, n];
a[n_] := spt[13 n + 6]/13;
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jan 18 2013
STATUS
approved