Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120814
Number of permutations of length n with exactly 6 occurrences of the pattern 2-13.
4
0, 0, 0, 0, 0, 2, 140, 3262, 47802, 535990, 5038418, 41781432, 315447990, 2214289350, 14664659100, 92612930280, 562220244768, 3301016862024, 18836205435208, 104862661271840, 571336322754792, 3054404571541092, 16056744308319000
OFFSET
1,6
REFERENCES
R. Parviainen, Lattice path enumeration of permutations with k occurrences of the pattern 2-13, preprint, 2006.
Robert Parviainen, Lattice Path Enumeration of Permutations with k Occurrences of the Pattern 2-13, Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.2.
LINKS
R. Parviainen, Lattice Path Enumeration of Permutations with k Occurrences of the Pattern 2-13, Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.2.
FORMULA
a(n) = (20160 + 44448n + 548n^2 - 4196n^3 - 565n^4 + 67n^5 + 17n^6 + n^7)/(720(n+7)(n+6))binomial[2n, n-6]; generating function = x^6 C^13 (-42 + 4054C - 18354C^2 + 36038C^3 - 40660C^4 + 30080C^5 - 16090C^6 + 6914C^7 - 2604C^8 + 840C^9 - 202C^10 + 30C^11 - 2C^12)/(2-C)^11, where C=(1-Sqrt[1-4x])/(2x) is the Catalan function.
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Parviainen (robertp(AT)ms.unimelb.edu.au), Jul 06 2006
STATUS
approved