Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficient triangle for the monic associated Laguerre-Sonin(e) polynomials of order one for parameter alpha=1.
3

%I #18 Mar 25 2024 07:01:51

%S 1,-4,1,18,-10,1,-96,86,-18,1,600,-756,246,-28,1,-4320,7092,-3168,552,

%T -40,1,35280,-71856,41112,-9720,1070,-54,1,-322560,787824,-552240,

%U 165720,-24600,1878,-70,1,3265920,-9329760,7768080,-2835360,531480,-54516,3066,-88

%N Coefficient triangle for the monic associated Laguerre-Sonin(e) polynomials of order one for parameter alpha=1.

%C See A199577 for general comments on associated Laguerre-Sonin(e) polynomials of order m, and the Ismail reference.

%C The monic row polynomials are La_n(1;1,x) = sum(a(n,k)*x^k,k=0..n), with the three term recurrence

%C La_n(1;1,x) = (x-2*(n+1))*La_{n-1}{1;1,x) - n*(n+1)*La_{n-2}{1;1,x), La_{-1}{1;1,x)=0, La_0(1;1,x)=1.

%C In the Ismail reference the non-monic associated Laguerre polynomials of order 1 appear on p. 160 in Theorem 5.6.1, eq. 5.6.11. The connection is: La_n(1;1,x)= L_n^{(alpha=1)}(x;1)*(n+1)!*(-1)^n.

%C The e.g.f. gLa(1;1,z,x) for La_n(1;1,x) can be obtained from the o.g.f. G(1;1,z,x) for the non-monic version L_n^{alpha=1}(x;1) by gLa(1;1,z,x)= (d/dz) (z*G(1;1,-z,x)).

%C G(1;1,z,x) satisfies an ordinary first order inhomogeneous differential equation:

%C (d/dz) G(1;1,z,x) = (3/(1-z)+(1-x)/(1-z)^2-1/(z*(1-z)^2 z)^2))* G(1;1,z,x) + 1/(z*(1-z)^2), with G(1;1,z=0,x)=1. The standard solution is:

%C G(1;1,z,x) = (exp(-x*z/(1-z))-1+z-x*exp(-x/(1-z))* (Ei(1,-x/(1-z))-Ei(1,-x)))/(z*(1-z)^2), with the exponential integral Ei(1,y)=int(exp(-t)/t,t=y..infty).

%D M. E. H. Ismail (two chapters by W. Van Assche), Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge University Press, 2005.

%F a(n,k)=[x^k] La_n(1;1,x), n>=0, k=0,...,n.

%F a(n,k)= (-1)^(n-k)*((n+1)*(n+1)!/((k+1)*(k+1)!))*

%F binomial(n,k)*hypergeom(-(n-k),k,1; -(n+1),k+2; 1), 0<=k<=n. [Ismail, p. 161, eq. (5.6.18)].

%F The e.g.f. gLa(1;1,z,x) for La_n(1;1,x) is exp(-x/(1+z))*x*(x-2*(1+z))*(Ei(1,-x/(1+z)) - Ei(1,-x))/(1+z)^4 + exp(x*z/(1+z))*(-x+2*(1+z))/(1+z)^4 +(1+z+x)/(1+z)^3 -2/(1+z)^2, with the exponential integral Ei.

%F The e.g.f. gLa(1;1,z,x) for the Euler-derivative

%F x*(d/dx) La_n(1;1,x) is x*exp(-x/(1+z))*(2*(1+z)-x)*

%F (Ei(1,-x/(1+z)) - Ei(1,-x))/(1+z)^4 + (1+z-x)*(1-exp(x*z/(1+z)))/(1+z)^3.

%F From this follows La_n(1;1,x) = (n+1)*La_n(1,x) -

%F x*(d/dx)La_n(1;0,x). For La_n(1;0,x) see A199577 where it is called La_n(1;x).

%e The triangle begins:

%e n\k 0 1 2 3 4 5 6 7 ...

%e 0: 1

%e 1: -4 1

%e 2: 18 -10 1

%e 3: -96 86 -18 1

%e 4: 600 -756 246 -28 1

%e 5: -4320 7092 -3168 552 -40 1

%e 6: 35280 -71856 41112 -9720 1070 -54 1

%e 7:-322560 787824 -552240 165720 -24600 1878 -70 1

%e ...

%p La := proc(n,x)

%p option remember;

%p if n= -1 then

%p 0;

%p elif n = 0 then

%p 1;

%p else

%p (x-2*n-2)*procname(n-1,x)-n*(n+1)*procname(n-2,x) ;

%p end if;

%p end proc:

%p A201201 := proc(n,k)

%p coeftayl( La(n,x),x=0,k) ;

%p end proc:

%p seq(seq(A201201(n,k),k=0..n),n=0..12) ; # _R. J. Mathar_, Dec 07 2011

%t a[n_, k_] := (-1)^(n-k)*((n+1)*(n+1)!/((k+1)*(k+1)!))*Binomial[n, k]*HypergeometricPFQ[{-(n-k), k, 1}, {-(n+1), k+2}, 1]; Table[a[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jun 21 2013 *)

%Y Cf. A199577 (alpha=0 case), A201202 (row sums), A201203 (alternating row sums).

%K sign,easy,tabl

%O 0,2

%A _Wolfdieter Lang_, Dec 06 2011