Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188039
Positions of 0 in A188038; complement of A188040.
3
2, 7, 12, 19, 24, 31, 36, 41, 48, 53, 60, 65, 70, 77, 82, 89, 94, 101, 106, 111, 118, 123, 130, 135, 140, 147, 152, 159, 164, 171, 176, 181, 188, 193, 200, 205, 210, 217, 222, 229, 234, 239, 246, 251, 258, 263, 270, 275, 280, 287, 292, 299, 304, 309, 316, 321, 328, 333, 340, 345, 350, 357, 362, 369, 374, 379, 386, 391, 398, 403, 408, 415, 420
OFFSET
1,1
COMMENTS
See A188014.
There is (conjecturally) a connection a(1+n) = f(n) where f(n) = 3*n +2 +2*floor(n*sqrt 2) is defined in A120861. Tested numerically up to n=40000. - R. J. Mathar, Jul 22 2020
LINKS
MAPLE
A188038 := proc(n)
if n = 1 then
1;
else
floor(n*sqrt(2))-floor((n-2)*sqrt(2))-2 ;
end if;
end proc:
isA188039 := proc(n)
if A188038(n) = 0 then
true;
else
false;
end if;
end proc:
A188039 := proc(n)
option remember;
if n = 1 then
2;
else
for a from procname(n-1)+1 do
if isA188039(a) then
return a;
end if;
end do:
end if;
end proc: # R. J. Mathar, Jul 22 2020
MATHEMATICA
r=2^(1/2)); k=2;
t=Table[Floor[n*r]-Floor[(n-k)*r]-Floor[k*r], {n, 1, 220}] (*A188038*)
Flatten[Position[t, 0]] (*A188039*)
Flatten[Position[t, 1]] (*A188040*)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 19 2011
STATUS
approved