Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179252
Numbers that have 12 terms in their Zeckendorf representation.
11
75024, 103681, 114627, 118808, 120405, 121015, 121248, 121337, 121371, 121384, 121389, 121391, 121392, 150049, 160995, 165176, 166773, 167383, 167616, 167705, 167739, 167752, 167757, 167759, 167760, 178706, 182887, 184484, 185094, 185327, 185416, 185450, 185463
OFFSET
1,1
LINKS
EXAMPLE
75024 = 1 + 3 + 8 + 21 + 55 + 144 + 377 + 987 + 2584 + 6765 + 17711 + 46368;
103681 = 1 + 3 + 8 + 21 + 55 + 144 + 377 + 987 + 2584 + 6765 + 17711 + 75025.
MAPLE
with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i: for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(25)-1 to 180000 do if B(i) = 12 then Q := `union`(Q, {i}) else end if end do: Q;
MATHEMATICA
Reap[For[m = 0; k = 1, k <= 10^8, k++, If[BitAnd[k, 2 k] == 0, m++; If[DigitCount[k, 2, 1] == 12, Print[m]; Sow[m]]]]][[2, 1]] (* Jean-François Alcover, Aug 20 2023 *)
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jul 05 2010
STATUS
approved