Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179246
Numbers that have 6 terms in their Zeckendorf representation.
11
232, 321, 355, 368, 373, 375, 376, 465, 499, 512, 517, 519, 520, 554, 567, 572, 574, 575, 588, 593, 595, 596, 601, 603, 604, 606, 607, 608, 698, 732, 745, 750, 752, 753, 787, 800, 805, 807, 808, 821, 826, 828, 829, 834, 836, 837, 839, 840, 841, 876, 889
OFFSET
1,1
COMMENTS
A007895(a(n)) = 6. - Reinhard Zumkeller, Mar 10 2013
LINKS
EXAMPLE
232 = 144 + 55 + 21 + 8 + 3 + 1;
321 = 233 + 55 + 21 + 8 + 3 + 1;
355 = 233 + 89 + 21 + 8 + 3 + 1;
368 = 233 + 89 + 34 + 8 + 3 + 1;
373 = 233 + 89 + 34 + 13 + 3 + 1.
MAPLE
with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i; for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(13)-1 to 900 do if B(i) = 6 then Q := `union`(Q, {i}) else end if end do: Q;
MATHEMATICA
zeck = DigitCount[Select[Range[12000], BitAnd[#, 2*#] == 0 &], 2, 1];
Position[zeck, 6] // Flatten (* Jean-François Alcover, Jan 30 2018 *)
PROG
(Haskell)
a179246 n = a179246_list !! (n-1)
a179246_list = filter ((== 6) . a007895) [1..]
-- Reinhard Zumkeller, Mar 10 2013
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jul 05 2010
STATUS
approved