Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118306
If n = product{k>=1} p(k)^b(n,k), where p(k) is the k-th prime and where each b(n,k) is a nonnegative integer, then: If n occurs earlier in the sequence, then a(n) = product{k>=2} p(k-1)^b(n,k); If n does not occur earlier in the sequence, then a(n) = product{k>=1} p(k+1)^b(n,k).
5
1, 3, 2, 9, 7, 15, 5, 27, 4, 21, 13, 45, 11, 33, 6, 81, 19, 75, 17, 63, 10, 39, 29, 135, 49, 51, 8, 99, 23, 105, 37, 243, 14, 57, 77, 225, 31, 69, 22, 189, 43, 165, 41, 117, 12, 87, 53, 405, 25, 147, 26, 153, 47, 375, 91, 297, 34, 93, 61, 315, 59, 111, 20, 729, 119, 195, 71
OFFSET
1,2
COMMENTS
Sequence is a permutation of the positive integers and it is its own inverse permutation.
From Antti Karttunen, Nov 05 2016: (Start)
A016945 gives the positions of even terms.
A007310 is closed with respect to this permutation. See A277911 for the permutation induced.
A029744 (without 3) seems to give the positions of records in this sequence (note that it gives the record positions in related A003961 and A048673) which implies that A083658 (without its term 5) would then give the record values.
(End)
FORMULA
From Antti Karttunen, Nov 05 2016: (Start)
a(1) = 1; and for n > 1, if n = a(k) for some k = 1 .. n-1, then a(n) = A064989(n), otherwise a(n) = A003961(n). [After the original definition and R. J. Mathar's Maple-code]
a(1) = 1, and for n > 1, if A055396(n) is odd, a(n) = A003961(n), otherwise a(n) = A064989(n). [The above reduces to this.]
a(n) = product{k>=1} prime(k-((-1)^A055396(n)))^e(k) when n = product{k>=1} prime(k)^e(k).
a(2n) = A249734(n) and a(A249734(n)) = 2n.
A126760(a(A007310(n))) = A277911(n).
For n > 1, A055396(a(n)) = A055396(n) - (-1)^A055396(n). [Permutation sends the terms on any odd row of A246278 to the next even row just below, and vice versa.]
A246277(a(n)) = A246277(n). [While keeping them in the same column.]
a(n) = A064989(A064989(a(A003961(A003961(n))))).
(End)
MAPLE
A064989 := proc(n) local a, ifs, p ; a := 1 ; ifs := ifactors(n)[2] ; for p in ifs do if op(1, p) > 2 then a := a* prevprime(op(1, p))^op(2, p) ; fi ; od; RETURN(a) ; end: A003961 := proc(n) local a, ifs, p ; a := 1 ; ifs := ifactors(n)[2] ; for p in ifs do a := a* nextprime(op(1, p))^op(2, p) ; od; RETURN(a) ; end: A118306 := proc(nmin) local a, anxt, i, n ; a := [1] ; while nops(a) < nmin do n := nops(a)+1 ; if n in a then anxt := A064989(n) ; else anxt := A003961(n) ; fi ; a := [op(a), anxt] ; od; a ; end: A118306(100) ; # R. J. Mathar, Sep 06 2007
PROG
(PARI)
A118306(n) = { if(1==n, 1, my(f = factor(n)); my(d = (-1)^primepi(f[1, 1])); for(i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])-d)); factorback(f)); }; \\ Antti Karttunen, Nov 06 2016
for(n=1, 10001, write("b118306.txt", n, " ", A118306(n)));
(Scheme) (define (A118306 n) (cond ((= 1 n) n) ((odd? (A055396 n)) (A003961 n)) (else (A064989 n)))) ;; Antti Karttunen, Nov 05 2016
KEYWORD
nonn,look
AUTHOR
Leroy Quet, May 14 2006
EXTENSIONS
More terms from R. J. Mathar, Sep 06 2007
A small omission in the definition corrected by Antti Karttunen, Nov 05 2016
STATUS
approved