Nothing Special   »   [go: up one dir, main page]

login
A099918
A Chebyshev transform related to the 7th cyclotomic polynomial.
1
1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1
OFFSET
0,3
COMMENTS
The g.f. is a Chebyshev transform of 1/(1+x-2x^2-x^3) under the Chebyshev mapping g(x)->(1/(1+x^2))g(x/(1+x^2)). The denominator is the 7th cyclotomic polynomial. The inverse of the 7 cyclotomic polynomial A014016 is given by sum{k=0..n, A099918(n-k)(k/2+1)(-1)^(k/2)(1+(-1)^k)/2}.
FORMULA
G.f.: (1+x^2)^2/(1+x+x^2+x^3+x^4+x^5+x^6).
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)^(-1)^k*b(n-2k), where b(n)=A094790(n/2+1)(1+(-1)^n)/2+A094789((n+1)/2)(1-(-1)^n)/2=(-1)^n*A006053(n+2).
MATHEMATICA
LinearRecurrence[{-1, -1, -1, -1, -1, -1}, {1, -1, 2, -2, 1, -1}, 90] (* Harvey P. Dale, May 25 2019 *)
CROSSREFS
Cf. A099860.
Sequence in context: A317529 A285194 A039978 * A099860 A317950 A255212
KEYWORD
easy,sign
AUTHOR
Paul Barry, Oct 30 2004
STATUS
approved