Nothing Special   »   [go: up one dir, main page]

login
A080359
The smallest integer x > 0 such that the number of primes in (x/2, x] equals n.
44
2, 3, 13, 19, 31, 43, 53, 61, 71, 73, 101, 103, 109, 113, 139, 157, 173, 181, 191, 193, 199, 239, 241, 251, 269, 271, 283, 293, 313, 349, 353, 373, 379, 409, 419, 421, 433, 439, 443, 463, 491, 499, 509, 523, 577, 593, 599, 601, 607, 613, 619, 647, 653, 659
OFFSET
1,1
COMMENTS
a(n) is the same as: Smallest integer x > 0 such that the number of unitary-prime-divisors of x! equals n.
Let p_n be the n-th prime. If p_n>3 is in the sequence, then all integers (p_n-1)/2, (p_n-3)/2, ..., (p_(n-1)+1)/2 are composite numbers. - Vladimir Shevelev, Aug 12 2009
For n >= 3, denote by q(n) the prime which is the nearest from the left to a(n)/2. Then there exists a prime between 2q(n) and a(n). The converse, generally speaking, is not true; i.e., there exist primes that are outside the sequence, but possess such property (e.g., 131). - Vladimir Shevelev, Aug 14 2009
See sequence A164958 for a generalization. - Vladimir Shevelev, Sep 02 2009
a(n) is the n-th Labos prime.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..4460 from Daniel Forgues)
N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, and J. Sondow, Generalized Ramanujan primes, arXiv:1108.0475 [math.NT], 2011.
N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, and J. Sondow, Generalized Ramanujan primes, Combinatorial and Additive Number Theory, Springer Proc. in Math. & Stat., CANT 2011 and 2012, Vol. 101 (2014), 1-13.
Ethan Berkove and Michael Brilleslyper, Subgraphs of Coprime Graphs on Sets of Consecutive Integers, Integers (2022) Vol. 22, #A47, see p. 8.
Vladimir Shevelev, On critical small intervals containing primes, arXiv:0908.2319 [math.NT], 2009.
Vladimir Shevelev, Ramanujan and Labos primes, their generalizations and classifications of primes, arXiv:0909.0715 [math.NT], 2009-2011.
Vladimir Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4.
Jonathan Sondow, Ramanujan primes and Bertrand's postulate, arXiv:0907.5232 [math.NT], 2009-2010.
Jonathan Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly, 116 (2009), 630-635.
FORMULA
a(n) = Min{x; Pi[x]-Pi[x/2]=n} = Min{x; A056171(x)=n}=Min{x; A056169(n!)=n}; where Pi()=A000720().
a(n) <= A193507(n) (cf. A194186). - Vladimir Shevelev, Aug 18 2011
EXAMPLE
n=5: in 31! five unitary-prime-divisors appear (firstly): {17,19,23,29,31}, while other primes {2,3,5,7,11,13} are at least squared. Thus a(5)=31.
Consider a(9)=71. Then the nearest prime < 71/2 is q(9)=31, and between 2q(9) and a(9), i.e., between 62 and 71 there exists a prime (67). - Vladimir Shevelev, Aug 14 2009
MATHEMATICA
nn=1000; t=Table[0, {nn+1}]; s=0; Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s<=nn && t[[s+1]]==0, t[[s+1]]=k], {k, Prime[3*nn]}]; Rest[t]
(* Second program: *)
a[1] = 2; a[n_] := a[n] = Module[{x = a[n-1]}, While[(PrimePi[x]-PrimePi[Quotient[x, 2]]) != n, x++ ]; x]; Array[a, 54] (* Jean-François Alcover, Sep 14 2018 *)
PROG
(PARI) a(n) = {my(x = 1); while ((primepi(x) - primepi(x\2)) != n, x++; ); x; } \\ Michel Marcus, Jan 15 2014
(Sage)
def A():
i = 0; n = 1
while True:
p = prime_pi(i) - prime_pi(i//2)
if p == n:
yield i
n += 1
i += 1
A080359 = A()
[next(A080359) for n in range(54)] # Peter Luschny, Sep 03 2014
CROSSREFS
Cf. A104272 (Ramanujan primes).
Cf. A060756, A080360 (largest integer x with n primes in (x/2,x]).
Sequence in context: A254462 A275030 A194598 * A193507 A368396 A103087
KEYWORD
nonn
AUTHOR
Labos Elemer, Feb 21 2003
EXTENSIONS
Definition corrected by Jonathan Sondow, Aug 10 2008
Shrunk title and moved part of title to comments by John W. Nicholson, Sep 18 2011
STATUS
approved