Nothing Special   »   [go: up one dir, main page]

login
A084784
Binomial transform = self-convolution: first column of the triangle (A084783).
15
1, 1, 2, 6, 25, 137, 944, 7884, 77514, 877002, 11218428, 160010244, 2516742498, 43260962754, 806650405800, 16213824084864, 349441656710217, 8037981040874313, 196539809431339642, 5090276002949080318, 139202688233361310841, 4008133046329085884137
OFFSET
0,3
COMMENTS
In the triangle (A084783), the diagonal (A084785) is the self-convolution of this sequence and the row sums (A084786) gives the differences of the diagonal and this sequence.
Ramanujan considers the continued fraction phi(x) = 1 / (x + 1 - 1^2 / (x + 3 - 2^2 / (x + 5 - 3^2 / (x + 7 - 4^2 / ...)))) and states that phi(x+1) approaches x phi(x)^2 as x gets large. The asymptotic expansion is phi(x) = 1/x - 1/x^2 + 2/x^3 - 6/x^4 + 24/x^5 - ... + (-1)^n * n! / x^(n+1) + ... but if we replace this with f(x) = a(0)/x - a(1)/x^2 + a(2)/x^3 - a(3)/x^4 + ... then formally f(x+1) = x f(x)^2 which is similar to my Feb 16 2006 formula. - Michael Somos, Jun 20 2015
This is also the Euler transform of A060223. - Gus Wiseman, Oct 16 2016
REFERENCES
S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 1, see page 223.
LINKS
FORMULA
G.f. satisfies A(n*x)^2 = n-th binomial transform of A(n*x).
G.f. A(x) satisfies 1 + x = A(x/(1 + x))^2 / A(x). - Michael Somos, Feb 16 2006
G.f.: A(x) = Product_{n>=1} 1/(1 - n*x)^(1/2^(n+1)). - Paul D. Hanna, Jun 16 2010
G.f.: A(x) = exp( Sum_{n>=1} A000670(n)*x^n/n ) where Sum_{n>=0} A000670(n)*x^n = Sum_{n>=0} n!*x^n/Product_{k=0..n} (1-k*x). - Paul D. Hanna, Sep 26 2011
a(n) ~ (n-1)! / (2 * (log(2))^(n+1)). - Vaclav Kotesovec, Nov 18 2014
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 25*x^4 + 137*x^5 + 944*x^6 + ...
where
A(x) = (1-x)^(-1/4)*(1-2*x)^(-1/8)*(1-3*x)^(-1/16)*(1-4*x)^(-1/32)*...
Also,
log(A(x)) = x + 3*x^2/2 + 13*x^3/3 + 75*x^4/4 + 541*x^5/5 + 4683*x^6/6 + ... + A000670(n)*x^n/n + ...
thus, the logarithmic derivative equals the series:
A'(x)/A(x) = 1/(1-x) + 2!*x/((1-x)*(1-2*x)) + 3!*x^2/((1-x)*(1-2*x)*(1-3*x)) + 4!*x^3/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)) + ...
MAPLE
a:= proc(n) option remember;
1+add(a(j)*(binomial(n, j)-a(n-j)), j=1..n-1)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jun 09 2023
MATHEMATICA
a[ n_]:= If[n<1, Boole[n==0], Module[{A= 1/x - 1/x^2}, Do [A= 2 A - Normal @ Series[ (x A^2) /. x -> x-1, {x, Infinity, k+1}], {k, 2, n}]; (-1)^n Coefficient[A, x, -n-1]]]; (* Michael Somos, Jun 20 2015 *)
nn=20; CoefficientList[Series[Exp[Sum[Times[1/k, i!, StirlingS2[k, i], x^k], {k, nn}, {i, k}]], {x, 0, nn}], x] (* Gus Wiseman, Oct 18 2016 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A=1; for(k=1, n, A = truncate(A + O(x^k)) + x * O(x^k); A += A - 1 / subst(A^-2, x, x / (1 + x)) / (1 + x); ); polcoeff(A, n))}; /* Michael Somos, Feb 18 2006 */
(PARI) /* Using o.g.f. exp( Sum_{n>=1} A000670(n)*x^n/n ): */
{a(n)=polcoeff(exp(intformal(sum(m=1, n+1, m!*x^(m-1)/prod(k=1, m, 1-k*x+x*O(x^n))))), n)}
for(n=0, 30, print1(a(n), ", "))
(Magma)
m:=50;
f:= func< n, x | Exp((&+[(&+[Factorial(j)*StirlingSecond(k, j)*x^k/k: j in [1..k]]): k in [1..n+2]])) >;
R<x>:=PowerSeriesRing(Rationals(), m+1); // A084784
Coefficients(R!( f(m, x) )); // G. C. Greubel, Jun 08 2023
(SageMath)
m=40
def f(n, x): return exp(sum(sum(factorial(j)*stirling_number2(k, j) *x^k/k for j in range(1, k+1)) for k in range(1, n+2)))
def A084784_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( f(m, x) ).list()
A084784_list(m) # G. C. Greubel, Jun 08 2023
(Python) # after Alois P. Heinz
from functools import cache
from math import comb as binomial
@cache
def a(n: int) -> int:
return 1 + sum((binomial(n, j) - a(n - j)) * a(j) for j in range(1, n))
print([a(n) for n in range(22)]) # Peter Luschny, Jun 09 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 13 2003
STATUS
approved