Nothing Special   »   [go: up one dir, main page]

login
A074477
Largest prime factor of 3^n - 1.
12
2, 2, 13, 5, 11, 13, 1093, 41, 757, 61, 3851, 73, 797161, 1093, 4561, 193, 34511, 757, 363889, 1181, 368089, 3851, 1001523179, 6481, 391151, 797161, 8209, 16493, 20381027, 4561, 4404047, 21523361, 2413941289, 34511, 2664097031, 530713
OFFSET
1,1
FORMULA
a(n) = A006530(A024023(n)). - Michel Marcus, Jul 18 2015
EXAMPLE
3^7 - 1 = 2186 = 2*1093, so a(7) = 1093.
MAPLE
A074477 := proc(n)
A006530( 3^n-1) ;
end proc: # R. J. Mathar, Jul 18 2015
# alternative:
a:= n-> max(seq(i[1], i=ifactors(3^n-1)[2])):
seq(a(n), n=1..40); # Alois P. Heinz, Jul 18 2015
MATHEMATICA
Table[FactorInteger[3^n - 1] [[-1, 1]], {n, 40}] (* Vincenzo Librandi, Aug 23 2013 *)
PROG
(PARI) for(n=1, 40, v=factor(3^n-1); print1(v[matsize(v)[1], 1], ", "))
(Magma) [Maximum(PrimeDivisors(3^n-1)): n in [1..40]]; // Vincenzo Librandi, Aug 23 2013
CROSSREFS
Cf. A006530 (largest prime factor), A024023 (3^n-1).
Cf. A074476 (largest prime factor of 3^n + 1), A005420 (largest prime factor of 2^n - 1), A074479 (largest prime factor of 5^n - 1).
Sequence in context: A130718 A268528 A173331 * A340587 A347080 A141575
KEYWORD
nonn
AUTHOR
Rick L. Shepherd, Aug 23 2002
EXTENSIONS
Terms to a(100) in b-file from Vincenzo Librandi, Aug 23 2013
a(101)-a(660) in b-file from Amiram Eldar, Feb 01 2020
a(661)-a(690) in b-file from Max Alekseyev, May 22 2022
STATUS
approved