Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060510
Alternating with hexagonal stutters: if n is hexagonal (2k^2 - k, i.e., A000384) then a(n)=a(n-1), otherwise a(n) = 1 - a(n-1).
7
0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1
OFFSET
0,1
COMMENTS
The row sums equal A110654 and the alternating row sums equal A130472. - Johannes W. Meijer, Aug 12 2015
This is also the array:
0 0 0 0 0 0 0 0 0 0 0 0 0 ...
1 1 1 1 1 1 1 1 1 1 1 1 1 ...
0 0 0 0 0 0 0 0 0 0 0 0 0 ...
1 1 1 1 1 1 1 1 1 1 1 1 1 ...
0 0 0 0 0 0 0 0 0 0 0 0 0 ...
1 1 1 1 1 1 1 1 1 1 1 1 1 ...
0 0 0 0 0 0 0 0 0 0 0 0 0 ...
1 1 1 1 1 1 1 1 1 1 1 1 1 ...
0 0 0 0 0 0 0 0 0 0 0 0 0 ...
1 1 1 1 1 1 1 1 1 1 1 1 1 ...
0 0 0 0 0 0 0 0 0 0 0 0 0 ...
...
read by antidiagonals. - N. J. A. Sloane, Mar 07 2023
FORMULA
a(n) = A002262(n) mod 2 = A060511(n) mod 2.
G.f.: x/(1-x^2) - (1+x)^(-1)*Sum(n>=1, x^(n*(2*n-1))). The sum is related to Theta functions. - Robert Israel, Aug 12 2015
EXAMPLE
Hexagonal numbers start 1,6,15, ... so this sequence goes 0 0 (stutter at 1) 1 0 1 0 0 (stutter at 6) 1 0 1 0 1 0 1 0 0 (stutter at 15) 1 0, etc.
As a triangle, sequence begins:
0;
0, 1;
0, 1, 0;
0, 1, 0, 1;
0, 1, 0, 1, 0;
0, 1, 0, 1, 0, 1;
...
MAPLE
T := proc(n, k): if k mod 2 = 1 then return(1) else return(0) fi: end: seq(seq(T(n, k), k=0..n), n=0..13); # Johannes W. Meijer, Aug 12 2015
MATHEMATICA
nxt[{n_, a_}]:={n+1, If[IntegerQ[(1+Sqrt[1+8(n+1)])/4], a, 1-a]}; NestList[ nxt, {0, 0}, 110][[All, 2]] (* Harvey P. Dale, Jan 13 2022 *)
PROG
(Python)
from math import isqrt
def A060510(n): return n+1&1^1^((m:=isqrt(n+1<<3)+1>>1)*(m-1)>>1&1) # Chai Wah Wu, Oct 23 2024
CROSSREFS
As a simple triangular or square array virtually the only sequences which appear are A000004, A000012 and A000035.
Cf. A230135.
Sequence in context: A188037 A144598 A144606 * A327205 A219071 A072629
KEYWORD
easy,nonn,tabl
AUTHOR
Henry Bottomley, Mar 22 2001
STATUS
approved