Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064988
Multiplicative with a(p^e) = prime(p)^e.
29
1, 3, 5, 9, 11, 15, 17, 27, 25, 33, 31, 45, 41, 51, 55, 81, 59, 75, 67, 99, 85, 93, 83, 135, 121, 123, 125, 153, 109, 165, 127, 243, 155, 177, 187, 225, 157, 201, 205, 297, 179, 255, 191, 279, 275, 249, 211, 405, 289, 363, 295, 369, 241, 375, 341, 459, 335, 327
OFFSET
1,2
FORMULA
From Antti Karttunen, Aug 08 & 22 2017: (Start)
For n = p_{i1} * p_{i2} * ... * p_{ik}, where the indices i1, i2, ..., ik of primes p are not necessarily distinct, a(n) = A006450(i1) * A006450(i2) * ... * A006450(ik).
a(n) = A003961(A290641(n)).
A046523(a(n)) = A046523(n). [Preserves the prime signature of n].
A003963(a(n)) = n.
(End)
EXAMPLE
a(12) = a(2^2*3) = prime(2)^2 * prime(3) = 3^2*5 = 45, where prime(n) = A000040(n).
MAPLE
a:= n-> mul(ithprime(i[1])^i[2], i=ifactors(n)[2]):
seq(a(n), n=1..70); # Alois P. Heinz, Sep 06 2018
MATHEMATICA
Table[If[n == 1, 1, Apply[Times, FactorInteger[n] /. {p_, e_} /; p > 1 :> Prime[p]^e]], {n, 58}] (* Michael De Vlieger, Aug 22 2017 *)
PROG
(PARI) { for (n=1, 1000, f=factor(n)~; a=1; for (i=1, length(f), a*=prime(f[1, i])^f[2, i]); write("b064988.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 02 2009
(PARI) a(n) = {my(f = factor(n)); for (k=1, #f~, f[k, 1] = prime(f[k, 1]); ); factorback(f); } \\ Michel Marcus, Aug 08 2017
(Scheme) (define (A064988 n) (if (= 1 n) n (* (A000040 (A020639 n)) (A064988 (A032742 n))))) ;; Antti Karttunen, Aug 08 2017
(Python)
from sympy import factorint, prime
from operator import mul
def a(n): return 1 if n==1 else reduce(mul, [prime(p)**e for p, e in factorint(n).items()])
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Aug 08 2017
CROSSREFS
Cf. A000040, A003961, A003963 (a left inverse), A006450, A048767, A257538, A290641.
Cf. A076610 (terms sorted into ascending order).
Sequence in context: A069205 A319987 A319985 * A166699 A191110 A178443
KEYWORD
mult,nonn
AUTHOR
Vladeta Jovovic, Oct 30 2001
STATUS
approved