Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052124
Expansion of e.g.f. exp(-2*x)/(1-x)^3.
4
1, 1, 4, 16, 88, 568, 4288, 36832, 354688, 3781504, 44199424, 561823744, 7714272256, 113769309184, 1793341407232, 30085661765632, 535170830467072, 10060645294440448, 199287423535808512, 4148644277780217856
OFFSET
0,3
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.64(b).
LINKS
FORMULA
a(n) = n*a(n-1) + 2*(n-1)*a(n-2). - Detlef Pauly (dettodet(AT)yahoo.de), Sep 22 2003
a(n) = (n+5)*(n+2)*n! * Sum_{k=0..n} (-1)^k*2^(k+2)*(k+3)/(k+5)!. - Vaclav Kotesovec, Oct 28 2012
G.f.: 1/Q(0), where Q(k) = 1 + 2*x - x*(k+3)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 22 2013
a(n) ~ n!*(n+5)*(n+2)/(2*exp(2)). - Vaclav Kotesovec, Jun 15 2013
From Peter Bala, Sep 20 2013: (Start)
a(n) ~ (1/2)*n^2*n!/e^2 for large n.
Letting n -> infinity in the above series for a(n) given by Kotesovec gives the series expansion 1/e^2 = Sum_{k >= 0} (-1)^k*(k+3)*2^(k+3)/(k+5)!.
The sequence b(n) := (1/2)*n!*(n+2)*(n+5) satisfies the recurrence for a(n) given above by Pauly but with the starting values b(0) = 5 and b(1) = 9. This leads to the finite continued fraction expansion a(n) = (1/2)*n!*(n+2)*(n+5)( 1/(5 + 4/(1 + 2/(2 + 4/(3 + ... + 2*(n-1)/n)))) ), valid for n >= 2. Letting n -> infinity in the previous result gives the infinite continued fraction expansion 1/e^2 = 1/(5 + 4/(1 + 2/(2 + 4/(3 + ... + 2*(n-1)/(n + ...))))). Cf. A082031. (End)
MAPLE
A052124 := proc(n) option remember; if n <=1 then 1 else n*A052124(n-1)+2*(n-1)*A052124(n-2); fi; end; # Detlef Pauly
MATHEMATICA
Table[(n+5)*(n+2)*n!*Sum[(-1)^k*2^(k+2)*(k+3)/(k+5)!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 28 2012 *)
With[{nn=20}, CoefficientList[Series[Exp[(-2x)]/(1-x)^3, {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Oct 23 2017 *)
PROG
(PARI) my(x='x+O('x^25)); Vec(serlaplace( exp(-2*x)/(1-x)^3)) \\ Michel Marcus, Oct 25 2021
(Python)
from math import factorial
from fractions import Fraction
def A052124(n): return int((n+5)*(n+2)*factorial(n)*sum(Fraction((-1 if k&1 else 1)*(k+3)<<k+2, factorial(k+5)) for k in range(n+1))) # Chai Wah Wu, Apr 20 2023
CROSSREFS
Sequence in context: A321238 A005618 A005495 * A235166 A013030 A124962
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 23 2000
STATUS
approved