Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047613
Numbers that are congruent to {1, 2, 4, 5} mod 8.
2
1, 2, 4, 5, 9, 10, 12, 13, 17, 18, 20, 21, 25, 26, 28, 29, 33, 34, 36, 37, 41, 42, 44, 45, 49, 50, 52, 53, 57, 58, 60, 61, 65, 66, 68, 69, 73, 74, 76, 77, 81, 82, 84, 85, 89, 90, 92, 93, 97, 98, 100, 101, 105, 106, 108, 109, 113, 114, 116, 117, 121, 122, 124
OFFSET
1,2
FORMULA
From Bruno Berselli, Jul 17 2012: (Start)
G.f.: x*(1+x+2*x^2+x^3+3*x^4)/((1+x)*(1-x)^2*(1+x^2)).
a(n) = 2*n-2-((-1)^n+i^(n*(n+1)))/2, where i=sqrt(-1). (End)
From Wesley Ivan Hurt, Jun 02 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(2k) = A047617(k), a(2k-1) = A047461(k). (End)
E.g.f.: (6 + sin(x) - cos(x) + (4*x - 3)*sinh(x) + (4*x - 5)*cosh(x))/2. - Ilya Gutkovskiy, Jun 02 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(2)-1)*Pi/16 + sqrt(2)*log(sqrt(2)+2)/4 - (sqrt(2)+1)*log(2)/8. - Amiram Eldar, Dec 23 2021
MAPLE
A047613:=n->2*n-2-(I^(2*n)+I^(n*(n+1)))/2: seq(A047613(n), n=1..100); # Wesley Ivan Hurt, Jun 02 2016
MATHEMATICA
Select[Range[120], MemberQ[{1, 2, 4, 5}, Mod[#, 8]] &] (* or *) LinearRecurrence[{1, 0, 0, 1, -1}, {1, 2, 4, 5, 9}, 60] (* Bruno Berselli, Jul 17 2012 *)
PROG
From Bruno Berselli, Jul 17 2012: (Start)
(Magma) [n: n in [1..120] | n mod 8 in [1, 2, 4, 5]];
(Maxima) makelist(2*n-2-((-1)^n+%i^(n*(n+1)))/2, n, 1, 60);
(PARI) Vec((1+x+2*x^2+x^3+3*x^4)/((1+x)*(1-x)^2*(1+x^2))+O(x^60)) (End)
CROSSREFS
Sequence in context: A284389 A342735 A342750 * A036795 A307563 A289175
KEYWORD
nonn,easy
STATUS
approved