Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034262
a(n) = n^3 + n.
37
0, 2, 10, 30, 68, 130, 222, 350, 520, 738, 1010, 1342, 1740, 2210, 2758, 3390, 4112, 4930, 5850, 6878, 8020, 9282, 10670, 12190, 13848, 15650, 17602, 19710, 21980, 24418, 27030, 29822, 32800, 35970, 39338, 42910, 46692, 50690, 54910, 59358, 64040, 68962, 74130
OFFSET
0,2
COMMENTS
k such that x^3 + x + k factors over the integers. - James R. Buddenhagen, Apr 19 2005
If a(n)=X [A155977], Y=b(n) [A071253], Z=c(n) [A034262], then X^2+Y^2 = n*Z^3; e.g., if n=3, a(3)=270, b(3)=90, c(3)=30, then 270^2+90^2=3*30^3. - Vincenzo Librandi, Nov 24 2010
From Bruno Berselli, Sep 06 2018: (Start)
After 0, sum of next n even numbers:
... 2, 2
... 4, 6, 10
... 8, 10, 12, 30
.. 14, 16, 18, 20, 68
.. 22, 24, 26, 28, 30, 130
.. 32, 34, 36, 38, 40, 42, 222 etc. (End)
Sequence occurs in the binomial identity Sum_{k = 0..n} a(k)* binomial(n,k)/binomial(n+k,k) = n*(n + 1)/2. Cf. A092181 and A155977. - Peter Bala, Feb 12 2019
For n >= 2, a(n) is the sum of the numbers in the 1st and last columns of an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows. - Wesley Ivan Hurt, May 17 2021
FORMULA
a(n) = 2*A006003(n).
a(n) = A002522(n)*A001477(n). - Zerinvary Lajos, Apr 20 2008
For n>1, a(n) = floor(n^5/(n^2-1)). - Gary Detlefs, Feb 10 2010
Sum_{n>=1} 1/a(n) = 0.6718659855... = gamma + Re psi(1+i) = A001620+A248177. [Borwein et al., J. Math. Anal. Appl. 316 (2006) 328]. - R. J. Mathar, Jul 17 2012
a(n) = -a(-n) for all n in Z. - Michael Somos, Jul 11 2017
G.f.: 2*x*(x^2+x+1)/(x-1)^4. - Alois P. Heinz, Oct 08 2022
E.g.f.: x*(2 + 3*x + x^2)*exp(x). - Stefano Spezia, Jun 20 2024
MATHEMATICA
Table[n^3 + n, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Mar 06 2010 *)
PROG
(Haskell)
a034262 n = a000578 n + n -- Reinhard Zumkeller, Sep 26 2014
(PARI) {a(n) = n^3 + n}; /* Michael Somos, Jul 11 2017 */
(Sage) [n**3+n for n in (0..38)] # Stefano Spezia, Oct 08 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Stuart M. Ellerstein (ellerstein(AT)aol.com), Apr 21 2000
STATUS
approved