Nothing Special   »   [go: up one dir, main page]

login
A023531
a(n) = 1 if n is of the form m(m+3)/2, otherwise 0.
95
1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
0,1
COMMENTS
Can be read as table: a(n,m) = 1 if n = m >= 0, else 0 (unit matrix).
a(n) = number of 1's between successive 0's (see also A005614, A003589 and A007538). - Eric Angelini, Jul 06 2005
Triangle T(n,k), 0 <= k <= n, read by rows, given by A000004 DELTA A000007 where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 03 2009
Sequence B is called a reverse reluctant sequence of sequence A, if B is triangle array read by rows: row number k lists first k elements of the sequence A in reverse order.
A023531 is reverse reluctant sequence of sequence A000007. - Boris Putievskiy, Jan 11 2013
Also the Bell transform (and the inverse Bell transform) of 0^n (A000007). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016
This is the turn sequence of the triangle spiral. To form the spiral: go a unit step forward, turn left a(n)*120 degrees, and repeat. The triangle sides are the runs of a(n)=0 (no turn). The sequence can be generated by a morphism with a special symbol S for the start of the sequence: S -> S,1; 1 -> 0,1; 0->0. The expansion lengthens each existing side and inserts a new unit side at the start. See the Fractint L-system in the links to draw the spiral this way. - Kevin Ryde, Dec 06 2019
LINKS
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), Article 00.2.4.
Boris Putievskiy, Transformations Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
Eric Weisstein's World of Mathematics, Jacobi Theta Functions.
Eric Weisstein's World of Mathematics, Modified Bessel Function of the First Kind.
FORMULA
If (floor(sqrt(2*n))-(2*n/(floor(sqrt(2*n)))) = -1, 1, 0). - Gerald Hillier, Sep 11 2005
a(n) = 1 - A023532(n); a(n) = 1 - mod(floor(((10^(n+2) - 10)/9)10^(n+1 - binomial(floor((1+sqrt(9+8n))/2), 2) - (1+floor(log((10^(n+2) - 10)/9, 10))))), 10). - Paul Barry, May 25 2004
a(n) = floor((sqrt(9+8n)-1)/2) - floor((sqrt(1+8n)-1)/2). - Paul Barry, May 25 2004
a(n) = round(sqrt(2n+3)) - round(sqrt(2n+2)). - Hieronymus Fischer, Aug 06 2007
a(n) = ceiling(2*sqrt(2n+3)) - floor(2*sqrt(2n+2)) - 1. - Hieronymus Fischer, Aug 06 2007
From Franklin T. Adams-Watters, Jun 29 2009: (Start)
G.f.: (1/2 x^{-1/8}theta_2(0,x^{1/2}) - 1)/x, where theta_2 is a Jacobi theta function.
G.f. for triangle: Sum T(n,k) x^n y^k = 1/(1-x*y). Sum T(n,k) x^n y^k / n! = Sum T(n,k) x^n y^k / k! = exp(x*y). Sum T(n,k) x^n y^k / (n! k!) = I_0(2*sqrt(x*y)), where I is the modified Bessel function of the first kind. (End)
a(n) = A000007(m), where m=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Jan 11 2013
The row polynomials are p(n,x) = x^n = (-1)^n n!Lag(n,-n,x), the normalized, associated Laguerre polynomials of order -n. As the prototypical Appell sequence with e.g.f. exp(x*y), its raising operator is R = x and lowering operator, L = d/dx, i.e., R p(n,x) = p(n+1,x), and L p(n,x) = n * p(n-1,x). - Tom Copeland, May 10 2014
a(n) = A010054(n+1) if n >= 0. - Michael Somos, May 17 2014
a(n) = floor(sqrt(2*(n+1)+1/2)-1/2) - floor(sqrt(2*n+1/2)-1/2). - Mikael Aaltonen, Jan 18 2015
a(n) = A003057(n+3) - A003057(n+2). - Robert Israel, Jan 18 2015
a(A000096(n)) = 1; a(A007701(n)) = 0. - Reinhard Zumkeller, Feb 14 2015
Characteristic function of A000096. - M. F. Hasler, Apr 12 2018
Sum_{k=1..n} a(k) ~ sqrt(2*n). - Amiram Eldar, Jan 13 2024
EXAMPLE
As a triangle:
1
0 1
0 0 1
0 0 0 1
0 0 0 0 1
0 0 0 0 0 1
G.f. = 1 + x^2 + x^5 + x^9 + x^14 + x^20 + x^27 + x^35 + x^44 + x^54 + ...
From Kevin Ryde, Dec 06 2019: (Start)
.
1 Triangular spiral: start at S;
/ \ go a unit step forward,
0 0 . turn left a(n)*120 degrees,
/ \ . repeat.
0 1 0 .
/ / \ \ \ Each side's length is 1 greater
0 0 0 0 0 than that of the previous side.
/ / \ \ \
0 0 S---1 0 0
/ / \ \
0 1---0---0---0---1 0
/ \
1---0---0---0---0---0---0---1
(End)
MAPLE
seq(op([0$m, 1]), m=0..10); # Robert Israel, Jan 18 2015
MATHEMATICA
If[IntegerQ[(Sqrt[9+8#]-3)/2], 1, 0]&/@Range[0, 100] (* Harvey P. Dale, Jul 27 2011 *)
a[ n_] := If[ n < 0, 0, Boole @ IntegerQ @ Sqrt[ 8 n + 9]]; (* Michael Somos, May 17 2014 *)
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, x^(1/2)] / (2 x^(1/8)) - 1) / x, {x, 0, n}]; (* Michael Somos, May 17 2014 *)
PROG
(Haskell)
a023531 n = a023531_list !! n
a023531_list = concat $ iterate ([0, 1] *) [1]
instance Num a => Num [a] where
fromInteger k = [fromInteger k]
(p:ps) + (q:qs) = p + q : ps + qs
ps + qs = ps ++ qs
(p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
_ * _ = []
-- Reinhard Zumkeller, Apr 02 2011
(Sage)
def A023531_row(n) :
if n == 0: return [1]
return [0] + A023531_row(n-1)
for n in (0..9): print(A023531_row(n)) # Peter Luschny, Jul 22 2012
(PARI) {a(n) = if( n<0, 0, issquare(8*n + 9))}; /* Michael Somos, May 17 2014 */
(PARI) A023531(n)=issquare(8*n+9) \\ M. F. Hasler, Apr 12 2018
(Python)
from math import isqrt
def A023531(n): return int((k:=n+1<<1)==(m:=isqrt(k))*(m+1)) # Chai Wah Wu, Nov 09 2024
KEYWORD
nonn,easy,tabl,nice
AUTHOR
Clark Kimberling, Jun 14 1998
STATUS
approved