OFFSET
0,3
COMMENTS
From Washington Bomfim, Jan 14 2021: (Start)
Let \n,m\ be the number of partitions of n into m non-distinct parts.
For n >= 1, \n,5\ = round((2*n^3-15*n^2+60*n-110*[n mod 2 = 0]-65*[n mod 2])/144).
(End)
LINKS
Washington Bomfim, Table of n, a(n) for n = 0..9999 (first 1000 terms from G. C. Greubel)
Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-1,-1,1,-1,2,-1).
FORMULA
a(n) = round((2*N^3 - 15*N^2 + 60*N - 110*[N mod 2=0] - 65*[N mod 2])/144), where N = n+5. - Washington Bomfim, Jan 14 2021
MAPLE
seq(coeff(series((1+x^5)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)), x, n+1), x, n), n = 0 .. 60); # G. C. Greubel, Sep 10 2019
MATHEMATICA
CoefficientList[Series[(1+x^5)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4), {x, 0, 60}], x] (* or *) LinearRecurrence[{2, -1, 1, -1, -1, 1, -1, 2, -1}, {1, 1, 2, 3, 5, 7, 10, 13, 18}, 60] (* Harvey P. Dale, Jul 24 2016 *)
PROG
(PARI) Vec((1+x^5)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4) +O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^5)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) )); // G. C. Greubel, Sep 10 2019
(Sage)
def A008766_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+x^5)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))).list()
A008766_list(60) # G. C. Greubel, Sep 10 2019
(GAP) a:=[1, 1, 2, 3, 5, 7, 10, 13, 18];; for n in [10..60] do a[n]:=2*a[n-1]-a[n-2]+a[n-3]-a[n-4]-a[n-5]+a[n-6]-a[n-7]+2*a[n-8]-a[n-9]; od; a; # G. C. Greubel, Sep 10 2019
(PARI) seq(x) = { a = vector(x+1); my(N = 5);
for(n=0, x, a[n+1]=round((2*N^3-15*N^2+60*N-110*!(N%2)-65*(N%2))/144); N++); a};
seq(60) \\ Washington Bomfim, Jan 14 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Terms a(45) onward added by G. C. Greubel, Sep 10 2019
STATUS
approved