Nothing Special   »   [go: up one dir, main page]

login
A008299
Triangle T(n,k) of associated Stirling numbers of second kind, n >= 2, 1 <= k <= floor(n/2).
34
1, 1, 1, 3, 1, 10, 1, 25, 15, 1, 56, 105, 1, 119, 490, 105, 1, 246, 1918, 1260, 1, 501, 6825, 9450, 945, 1, 1012, 22935, 56980, 17325, 1, 2035, 74316, 302995, 190575, 10395, 1, 4082, 235092, 1487200, 1636635, 270270, 1, 8177, 731731, 6914908, 12122110
OFFSET
2,4
COMMENTS
T(n,k) is the number of set partitions of [n] into k blocks of size at least 2. Compare with A008277 (blocks of size at least 1) and A059022 (blocks of size at least 3). See also A200091. Reading the table by diagonals gives A134991. The row generating polynomials are the Mahler polynomials s_n(-x). See [Roman, 4.9]. - Peter Bala, Dec 04 2011
Row n gives coefficients of moments of Poisson distribution about the mean expressed as polynomials in lambda [Haight]. The coefficients of the moments about the origin are the Stirling numbers of the second kind, A008277. - N. J. A. Sloane, Jan 24 2020
Rows are of lengths 1,1,2,2,3,3,..., a pattern typical of matrices whose diagonals are rows of another lower triangular matrix--in this instance those of A134991. - Tom Copeland, May 01 2017
For a relation to decomposition of spin correlators see Table 2 of the Delfino and Vito paper. - Tom Copeland, Nov 11 2012
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
Frank Avery Haight, "Handbook of the Poisson distribution," John Wiley, 1967. See pages 6,7, but beware of errors. [Haight on page 7 gives five different ways to generate these numbers (see link)].
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.
S. Roman, The Umbral Calculus, Dover Publications, New York (2005), pp. 129-130.
LINKS
Vincenzo Librandi and Alois P. Heinz, Rows n = 2..200, flattened (rows n = 2..104 from Vincenzo Librandi)
Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order"
J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Generalized Stirling permutations and forests: Higher-order Eulerian and Ward numbers, Electronic Journal of Combinatorics 22(3) (2015), #P3.37.
Fufa Beyene, Jörgen Backelin, Roberto Mantaci, and Samuel A. Fufa, Set Partitions and Other Bell Number Enumerated Objects, J. Int. Seq., Vol. 26 (2023), Article 23.1.8.
Gilles Bonnet and Anna Gusakova, Concentration inequalities for Poisson U-statistics, arXiv:2404.16756 [math.PR], 2024. See p. 17.
E. Rodney Canfield, J. William Helton, and Jared A. Hughes, Uniform Convergence of an Asymptotic Approximation to Associated Stirling Numbers, arXiv:2409.01489 [math.CO], 2024. See p. 12.
Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 3.
Daniel W. Cranston and Chun-Hung Liu, Proper Conflict-free Coloring of Graphs with Large Maximum Degree, arXiv:2211.02818 [math.CO], 2022.
Gesualdo Delfino and Jacopo Viti, Potts q-color field theory and scaling random cluster model, arXiv:1104.4323 [hep-th], 2011.
Ming-Jian Ding and Jiang Zeng, Proof of an explicit formula for a series from Ramanujan's Notebooks via tree functions, arXiv:2307.00566 [math.CO], 2023.
A. E. Fekete, Apropos two notes on notation, Amer. Math. Monthly, 101 (1994), 771-778.
F. A. Haight, Handbook of the Poisson distribution, John Wiley, 1967 [Annotated scan of page 7 only. Note that there is an error in the table.]
Mathematics Stack Exchange, Mahler polynomials and the zeros of the incomplete gamma function, a Mathematics Stack Exchange question by Tom Copeland, Jan 06 2016.
R. Paris, A uniform asymptotic expansion for the incomplete gamma function, Journal of Computational and Applied Mathematics, 148 (2002), p. 223-239 (See 332. From Tom Copeland, Jan 03 2016).
L. M. Smiley, Completion of a Rational Function Sequence of Carlitz, arXiv:math/0006106 [math.CO], 2000.
M. Z. Spivey, On Solutions to a General Combinatorial Recurrence, J. Int. Seq. 14 (2011) # 11.9.7.
Erik Vigren and Andreas Dieckmann, A New Result in Form of Finite Triple Sums for a Series from Ramanujan’s Notebooks, Symmetry (2022) Vol. 14, No. 6, 1090.
Eric Weisstein's World of Mathematics, Mahler polynomial
FORMULA
T(n,k) = abs(A137375(n,k)).
E.g.f. with additional constant 1: exp(t*(exp(x)-1-x)) = 1 + t*x^2/2! + t*x^3/3! + (t+3*t^2)*x^4/4! + ....
Recurrence relation: T(n+1,k) = k*T(n,k) + n*T(n-1,k-1).
T(n,k) = A134991(n-k,k); A134991(n,k) = T(n+k,k).
More generally, if S_r(n,k) gives the number of set partitions of [n] into k blocks of size at least r then we have the recurrence S_r(n+1,k) = k*S_r(n,k) + binomial(n,r-1)*S_r(n-r+1,k-1) (for this sequence, r=2), with associated e.g.f.: Sum_{n>=0, k>=0} S_r(n,k)*u^k*(t^n/n!) = exp(u*(e^t - Sum_{i=0..r-1} t^i/i!)).
T(n,k) = Sum_{i=0..k} (-1)^i*binomial(n, i)*Sum_{j=0..k-i} (-1)^j*(k-i-j)^(n-i)/(j!*(k-i-j)!). - David Wasserman, Jun 13 2007
G.f.: (R(0)-1)/(x^2*y), where R(k) = 1 - (k+1)*y*x^2/( (k+1)*y*x^2 - (1-k*x)*(1-x-k*x)/R(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 09 2013
T(n,k) = Sum_{i=0..min(n,k)} (-1)^i * binomial(n,i) * Stirling2(n-i,k-i) = Sum_{i=0..min(n,k)} (-1)^i * A007318(n,i) * A008277(n-i,k-i). - Max Alekseyev, Feb 27 2017
T(n, k) = Sum_{j=0..n-k} binomial(j, n-2*k)*E2(n-k, n-k-j) where E2(n, k) are the second-order Eulerian numbers A340556. - Peter Luschny, Feb 11 2021
EXAMPLE
There are 3 ways of partitioning a set N of cardinality 4 into 2 blocks each of cardinality at least 2, so T(4,2)=3.
Table begins:
1;
1;
1, 3;
1, 10;
1, 25, 15;
1, 56, 105;
1, 119, 490, 105;
1, 246, 1918, 1260;
1, 501, 6825, 9450, 945;
1, 1012, 22935, 56980, 17325;
1, 2035, 74316, 302995, 190575, 10395;
1, 4082, 235092, 1487200, 1636635, 270270;
1, 8177, 731731, 6914908, 12122110, 4099095, 135135;
...
Reading the table by diagonals produces the triangle A134991.
MAPLE
A008299 := proc(n, k) local i, j, t1; if k<1 or k>floor(n/2) then t1 := 0; else
t1 := add( (-1)^i*binomial(n, i)*add( (-1)^j*(k - i - j)^(n - i)/(j!*(k - i - j)!), j = 0..k - i), i = 0..k); fi; t1; end; # N. J. A. Sloane, Dec 06 2016
G:= exp(lambda*(exp(x)-1-x)):
S:= series(G, x, 21):
seq(seq(coeff(coeff(S, x, n)*n!, lambda, k), k=1..floor(n/2)), n=2..20); # Robert Israel, Jan 15 2020
T := proc(n, k) option remember; if n < 0 then return 0 fi; if k = 0 then return k^n fi; k*T(n-1, k) + (n-1)*T(n-2, k-1) end:
seq(seq(T(n, k), k=1..n/2), n=2..9); # Peter Luschny, Feb 11 2021
MATHEMATICA
t[n_, k_] := Sum[ (-1)^i*Binomial[n, i]*Sum[ (-1)^j*(k - i - j)^(n - i)/(j!*(k - i - j)!), {j, 0, k - i}], {i, 0, k}]; Flatten[ Table[ t[n, k], {n, 2, 14}, {k, 1, Floor[n/2]}]] (* Jean-François Alcover, Oct 13 2011, after David Wasserman *)
Table[Sum[Binomial[n, k - j] StirlingS2[n - k + j, j] (-1)^(j + k), {j, 0, k}], {n, 15}, {k, n/2}] // Flatten (* Eric W. Weisstein, Nov 13 2018 *)
PROG
(PARI) {T(n, k) = if( n < 1 || 2*k > n, n==0 && k==0, sum(i=0, k, (-1)^i * binomial( n, i) * sum(j=0, k-i, (-1)^j * (k-i-j)^(n-i) / (j! * (k-i-j)!))))}; /* Michael Somos, Oct 19 2014 */
(PARI) { T(n, k) = sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) ); } /* Max Alekseyev, Feb 27 2017 */
CROSSREFS
Rows: A000247 (k=2), A000478 (k=3), A058844 (k=4).
Row sums: A000296, diagonal: A259877.
Sequence in context: A364850 A325830 A331155 * A016478 A135573 A257254
KEYWORD
nonn,tabf,nice,easy
EXTENSIONS
Formula and cross-references from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
Edited by Peter Bala, Dec 04 2011
Edited by N. J. A. Sloane, Jan 24 2020
STATUS
approved