Nothing Special   »   [go: up one dir, main page]

login
A005277
Nontotients: even numbers k such that phi(m) = k has no solution.
(Formerly M4927)
92
14, 26, 34, 38, 50, 62, 68, 74, 76, 86, 90, 94, 98, 114, 118, 122, 124, 134, 142, 146, 152, 154, 158, 170, 174, 182, 186, 188, 194, 202, 206, 214, 218, 230, 234, 236, 242, 244, 246, 248, 254, 258, 266, 274, 278, 284, 286, 290, 298, 302, 304, 308, 314, 318
OFFSET
1,1
COMMENTS
If p is prime then the following two statements are true. I. 2p is in the sequence iff 2p+1 is composite (p is not a Sophie Germain prime). II. 4p is in the sequence iff 2p+1 and 4p+1 are composite. - Farideh Firoozbakht, Dec 30 2005
Another subset of nontotients consists of the numbers j^2 + 1 such that j^2 + 2 is composite. These numbers j are given in A106571. Similarly, let b be 3 or a number such that b == 1 (mod 4). For any j > 0 such that b^j + 2 is composite, b^j + 1 is a nontotient. - T. D. Noe, Sep 13 2007
The Firoozbakht comment can be generalized: Observe that if k is a nontotient and 2k+1 is composite, then 2k is also a nontotient. See A057192 and A076336 for a connection to Sierpiński numbers. This shows that 271129*2^j is a nontotient for all j > 0. - T. D. Noe, Sep 13 2007
REFERENCES
Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 44 at p. 91.
R. K. Guy, Unsolved Problems in Number Theory, B36.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 91.
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..29750 (terms 1..10000 from T. D. Noe).
Matteo Caorsi and Sergio Cecotti, Geometric classification of 4d N=2 SCFTs, arXiv:1801.04542 [hep-th], 2018.
K. Ford, S. Konyagin, and C. Pomerance, Residue classes free of values of Euler's function, arXiv:2005.01078 [math.NT] (1999).
Eric Weisstein's World of Mathematics, Nontotient.
Wikipedia, Nontotient.
FORMULA
a(n) = 2*A079695(n). - R. J. Mathar, Sep 29 2021
{k: k even and A014197(k) = 0}. - R. J. Mathar, Sep 29 2021
EXAMPLE
There are no values of m such that phi(m)=14, so 14 is a term of the sequence.
MAPLE
A005277 := n -> if type(n, even) and invphi(n)=[] then n fi: seq(A005277(i), i=1..318); # Peter Luschny, Jun 26 2011
MATHEMATICA
searchMax = 320; phiAnsYldList = Table[0, {searchMax}]; Do[phiAns = EulerPhi[m]; If[phiAns <= searchMax, phiAnsYldList[[phiAns]]++ ], {m, 1, searchMax^2}]; Select[Range[searchMax], EvenQ[ # ] && (phiAnsYldList[[ # ]] == 0) &] (* Alonso del Arte, Sep 07 2004 *)
totientQ[m_] := Select[ Range[m +1, 2m*Product[(1 - 1/(k*Log[k]))^(-1), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m &, 1] != {}; (* after Jean-François Alcover, May 23 2011 in A002202 *) Select[2 Range@160, ! totientQ@# &] (* Robert G. Wilson v, Mar 20 2023 *)
PROG
(Haskell)
a005277 n = a005277_list !! (n-1)
a005277_list = filter even a007617_list
-- Reinhard Zumkeller, Nov 22 2015
(PARI) is(n)=n%2==0 && !istotient(n) \\ Charles R Greathouse IV, Mar 04 2017
(Magma) [n: n in [2..400 by 2] | #EulerPhiInverse(n) eq 0]; // Marius A. Burtea, Sep 08 2019
CROSSREFS
See A007617 for all numbers k (odd or even) such that phi(m) = k has no solution.
All even numbers not in A002202. Cf. A000010.
Sequence in context: A134837 A105583 A323030 * A079702 A235688 A176274
KEYWORD
nonn
EXTENSIONS
More terms from Jud McCranie, Oct 13 2000
STATUS
approved