Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004760
List of numbers whose binary expansion does not begin 10.
38
0, 1, 3, 6, 7, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122
OFFSET
1,3
COMMENTS
For n >= 2 sequence {a(n+2)} is the minimal recursive such that A007814(a(n+2))=A007814(n). - Vladimir Shevelev, Apr 27 2009
A053645(a(n)) = n-1 for n > 0. - Reinhard Zumkeller, May 20 2009
a(n+1) is also the number of nodes in a complete binary tree with n nodes in the bottommost level. - Jacob Jona Fahlenkamp, Feb 01 2023
LINKS
Vladimir Shevelev, Several results on sequences which are similar to the positive integers, arXiv:0904.2101 [math.NT], 2009. [Vladimir Shevelev, Apr 15 2009]
FORMULA
For n > 0, a(n) = 3n - 2 - A006257(n-1). - Ralf Stephan, Sep 16 2003
a(0) = 0, a(1) = 1, for n > 0: a(2n) = 2*a(n) + 1, a(2n+1) = 2*a(n+1). - Philippe Deléham, Feb 29 2004
For n >= 3, A007814(a(n)) = A007814(n-2). - Vladimir Shevelev, Apr 15 2009
a(n+2) = min{m>a(n+1): A007814(m)=A007814(n)}; A010060(a(n+2)) = 1-A010060(n). - Vladimir Shevelev, Apr 27 2009
a(1)=0, a(2)=1, a(2^m+k+2) = 2^(m+1) + 2^m+k, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Jul 30 2016
G.f.: x/(1-x)^2 + (x/(1-x))*Sum_{k>=0} 2^k*x^(2^k). - Robert Israel, Aug 03 2016
a(2^m+k) = A004761(2^m+k) + 2^m, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Aug 08 2016
For n > 0, a(n+1) = n + 2^ceiling(log_2(n)) - 1. - Jacob Jona Fahlenkamp, Feb 01 2023
MAPLE
0, 1, seq(seq(3*2^d+x, x=0..2^d-1), d=0..6); # Robert Israel, Aug 03 2016
MATHEMATICA
Select[Range@ 125, If[Length@ # < 2, #, Take[#, 2]] &@ IntegerDigits[#, 2] != {1, 0} &] (* Michael De Vlieger, Aug 02 2016 *)
PROG
(PARI) is(n)=n<2 || binary(n)[2] \\ Charles R Greathouse IV, Sep 23 2012
(PARI) print1("0, 1"); for(i=0, 5, for(n=3<<i, (4<<i)-1, print1(", "n))) \\ Charles R Greathouse IV, Sep 23 2012
(PARI) a(n) = if(n<=2, n-1, (n-=2) + 2<<logint(n, 2)); \\ Kevin Ryde, Jul 22 2022
(R)
maxrow <- 8 # by choice
b01 <- 1
for(m in 0:maxrow){
b01 <- c(b01, rep(1, 2^(m+1))); b01[2^(m+1):(2^(m+1)+2^m-1)] <- 0
}
a <- which(b01 == 1)
# Yosu Yurramendi, Mar 30 2017
(Python)
def A004760(n): return m+(1<<m.bit_length()) if (m:=n-2)>0 else n-1 # Chai Wah Wu, Jul 26 2023
KEYWORD
nonn,easy,base
EXTENSIONS
Offset changed to 1, b-file corrected. - N. J. A. Sloane, Aug 07 2016
STATUS
approved