Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A verifiable (t, n) threshold quantum state sharing scheme on IBM quantum cloud platform

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In current verifiable quantum state sharing schemes, the dishonest behaviors of certain participants can be verified. However, these schemes have either high resource consumption, low verification efficiency or lack simulation implementations. To compensate for the shortcomings of current schemes, a new verifiable (t, n) threshold quantum state sharing scheme on the IBM quantum cloud platform is proposed. To reduce resource consumption, the proposed scheme prepares only one secret particle and then performs the Lagrange unitary operator on it, and the transformed secret particle is shared in the authorized subset of participants. To improve verification efficiency, the scheme performs the composite rotation unitary operator on the received message particle, such that it not only verifies the validity of the message particle but also reconstructs the original secret particle. The correctness of the proposed scheme is verified by not only mathematic proof but also experimental simulation on the IBM quantum cloud platform. Compared with the two other schemes based on the rotation unitary operator, the proposed scheme provides stronger verification security by using the private shadow key and rotation key. Compared with the two other schemes based on the verification mechanism, the proposed scheme has lower resource consumption and higher verification efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Deng, F., Zhou, H., Long, G.: Circular quantum secret sharing. J. Phys. A General Phys. 39, 14089–14099 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Lin, S., Wen, Q.Y., Qin, S.J., Zhu, F.C.: Multiparty quantum secret sharing with collective eavesdropping-check. Opt. Commun. 282(22), 4455–4459 (2009)

    ADS  Google Scholar 

  4. Lin, J., Hwang, T.: New circular quantum secret sharing for remote agents. Quantum Inf. Process. 12(1), 685–697 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Tavakoli, A., Herbauts, I., Zukowski, M., Bourennane, M.: Secret sharing with a single d-level quantum system. Phys. Rev. A 92, 030302 (2015)

    ADS  Google Scholar 

  6. Karimipour, V., Asoudeh, M.: Quantum secret sharing and random hopping: using single states instead of entanglement. Phys. Rev. A 92(3), 030301 (2015)

    ADS  MathSciNet  Google Scholar 

  7. Du, Y.T., Bao, W.S.: Multiparty quantum secret sharing scheme based on the phase shift operations. Opt. Commun. 308, 159–163 (2013)

    ADS  Google Scholar 

  8. Sarvepalli, P.: Non-threshold quantum secret sharing schemes in the graph state formalism. Phys. Rev. A 86(4), 102–110 (2012)

    Google Scholar 

  9. Liu, F., Su, Q., Wen, Q.Y.: Eavesdropping on multiparty quantum secret sharing scheme based on the phase shift operations. Int. J. Theor. Phys. 53(5), 1730–1737 (2014)

    MATH  Google Scholar 

  10. Bai, C.M., Li, Z.H., Li, Y.M.: Sequential quantum secret sharing using a single qudit. Commun. Theor. Phys. 69(5), 513 (2018)

    ADS  MathSciNet  Google Scholar 

  11. Cleve, R., Gottesman, D., Lo, H.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999)

    ADS  Google Scholar 

  12. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78(4), 144–162 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Li, B., Yang, Y., Wen, Q.: Threshold quantum secret sharing of secure direct communication. Chin. Phys. Lett. 26(1), 21–24 (2009)

    MathSciNet  Google Scholar 

  14. Sarvepalli, P.K., Klappenecker, A.: Sharing classical secrets with Calderbank–Shor–Steane codes. Phys. Rev. A 80(2), 022321 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Keet, A., Fortescue, B., Markham, D., Sanders, B.C.: Quantum secret sharing with qudit graph states. Phys. Rev. A 82(6), 062315 (2010)

    ADS  Google Scholar 

  16. Mouzali, A., Merazka, F., Markham, D.: Quantum secret sharing with error correction. Commun. Theor. Phys. 58(11), 661–671 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Dehkordi, M.H., Fattahi, E.: Threshold quantum secret sharing between multiparty and multiparty using Greenberger–Horne–Zeilinger state. Quantum Inf. Process. 12(2), 1299–1306 (2013)

    ADS  MATH  Google Scholar 

  18. Chen, R.K., Zhang, Y.Y., Shi, J.H., et al.: A multiparty error-correcting method for quantum secret sharing. Quantum Inf. Process. 13(1), 21–31 (2014)

    ADS  MATH  Google Scholar 

  19. Hong, L., Zhang, J., Luo, M.X., et al.: Hybrid threshold adaptable quantum secret sharing scheme with reverse Huffman-Fibonacci-tree coding. Sci. Rep. 6, 31350 (2016)

    ADS  Google Scholar 

  20. Bai, C.M., Li, Z.H., Liu, C.J., et al.: Quantum secret sharing using orthogonal multiqudit entangled states. Quantum Inf. Process. 16(12), 304 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Qin, H., Zhu, X., Dai, Y.: (t, n) Threshold quantum secret sharing using the phase shift operation. Quantum Inf. Process. 14(8), 2997–3004 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Qin, H., Tso, R.: Threshold quantum state sharing based on entanglement swapping. Quantum Inf. Process. 17(6), 142 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Cao, H., Ma, W.: (t, n) threshold quantum state sharing scheme based on linear equations and unitary operation. IEEE Photonics J. 9(1), 7600207 (2017)

    MathSciNet  Google Scholar 

  24. Benor, M., Crepeau, C., Gottesman, D., et al.: Secure multiparty quantum computation with (only) a strict honest majority. In: Proceedings of IEEE Symposium on Foundations of Computer Science, pp. 249–260. IEEE Computer Society (2006)

  25. Cao, H., Ma, W.P.: Verifiable threshold quantum state sharing scheme. IEEE Access 6, 10453–10457 (2018)

    Google Scholar 

  26. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    MathSciNet  MATH  Google Scholar 

  27. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  28. Aos,V., Baerdemacker, S.: From reversible computation to quantum computation by Lagrange interpolation. Mathematics 1–15 (2015)

  29. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    ADS  Google Scholar 

  30. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)

    ADS  MATH  Google Scholar 

  31. Deng, F.G., Long, G.L., Liu, XSh: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    ADS  Google Scholar 

  32. Deng, F.G., Long, G. L.: Quantum privacy amplification for quantum secure direct communication. e-print quant-ph/0408102 (2004)

Download references

Acknowledgements

This work is partially supported by National Natural Science Foundation of China under Grant Nos. 61772098 and 61772099, and National Key Research and Development Program of China under Nos. 2018YFB0904900 and 2018YFB0904905.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Liu, Y., Xiao, M. et al. A verifiable (t, n) threshold quantum state sharing scheme on IBM quantum cloud platform. Quantum Inf Process 19, 337 (2020). https://doi.org/10.1007/s11128-020-02846-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02846-8

Keywords

Navigation