Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Robust Quantum Secure Multiparty Computation Protocols for Minimum Value Calculation in Collective Noises and Their Simulation

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, two quantum secure multiparty computation protocols for the logical AND (QSMC_AND) are proposed using decoherence-free (DF) states, which can resist collective-dephasing noise and collective-rotation noise, respectively. The protocols enable the secure calculation of the logical AND value of the parties’ single-bit secret with the assistance of a semi-honest third party (TP). Based on these protocols, quantum secure multiparty computation protocols for calculating the minimum value of parties’ n-bit secret are also designed. Moreover, some common outsider’s and insider’s attacks are discussed, and the simulations of our QSMC_AND protocols are conducted on the IBM Q cloud platform to verify the correctness and noise resistance. The results demonstrate the feasibility and effectiveness of the protocols in realistic quantum computing environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nat. 509(7501), 475–478 (2014)

    Article  ADS  Google Scholar 

  2. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108(13), 130502 (2012)

    Article  ADS  Google Scholar 

  3. Xu, G.B., Wen, Q.Y., Gao, F., Qin, S.J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13(12), 2587–2594 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Liu, W.J., Chen, Z.Y., Ji, S., Wang, H.B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56(10), 3164–3174 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Yang, Y.G., Li, B.R., Kang, S.Y., Chen, X.B., Zhou, Y.H., Shi, W.M.: New quantum key agreement protocols based on cluster states. Quantum Inf. Process. 18(3), 77 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Qin, H.W., Zhu, X.H., Dai, Y.W.: (t, n) threshold quantum secret sharing using the phase shift operation. Quantum Inf. Process. 14(8), 2997–3004 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Hu, W.W., Zhou, R.G., Li, X., Fan, P., Tan, C.Y.: A novel dynamic quantum secret sharing in high-dimensional quantum system. Quantum Inf. Process. 20(5), 159 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Sutradhar, K., Om, H.: Efficient quantum secret sharing without a trusted player. Quantum Inf. Process. 19(2), 73 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Sutradhar, K., Om, H.: Enhanced (t, n) threshold d-level quantum secret sharing. Sci. Rep. 11(1), 17083 (2021)

    Article  ADS  Google Scholar 

  10. Yang, Y.G., Lei, H., Liu, Z.C., Zhou, Y.H., Shi, W.M.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15(6), 2487–2497 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Xin, X.J., He, Q.Q., Wang, Z., Yang, Q.L., Li, F.G.: Security analysis and improvement of an arbitrated quantum signature scheme. Opt. 189, 23–31 (2019)

    Google Scholar 

  12. Zhang, L., Sun, H.W., Zhang, K.J., Jia, H.Y.: An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption. Quantum Inf. Process. 16(3), 70 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Yao, A.C.: Protocols for secure computations. In: FOCS 82, 160–164 (1982)

    Google Scholar 

  14. Li, R.H., Wu, C.K., Zhang, Y.Q.: A fair and efficient protocol for the millionaires’ problem. Chin. J. Electron. 18(2), 249–254 (2009)

    Google Scholar 

  15. Li, S.D., Wang, D.S., Dai, Y.Q., Luo, P.: Symmetric cryptographic solution to Yao’s millionaires’ problem and an evaluation of secure multiparty computations. Inf. Sci. 178(1), 244–255 (2008)

  16. Sutradhar, K., Om, H.: A generalized quantum protocol for secure multiparty summation. IEEE Trans. Circuits Syst. II Express Briefs 67(12), 2978–2982 (2020)

  17. Sutradhar, K., Om, H.: Hybrid quantum protocols for secure multiparty summation and multiplication. Sci. Rep. 10(1), 9097 (2020)

    Article  ADS  Google Scholar 

  18. Sutradhar, K., Om, H.: An efficient simulation for quantum secure multiparty computation. Sci. Rep. 11(1), 2206 (2021)

    Article  ADS  Google Scholar 

  19. Sutradhar, K., Om, H.: Secret sharing based multiparty quantum computation for multiplication. Int. J. Theor. Phys. 60(9), 3417–3425 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sutradhar, K., Om, H.: A cost-effective quantum protocol for secure multi-party multiplication. Quantum Inf. Process. 20(11), 380 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Tang, Y.H., Jia, H.Y., Wu, X., Chen, H.M., Zhang, Y.M.: Robust semi-quantum private comparison protocols against collective noises with decoherence-free states. Quantum Inf. Process. 21(3), 97 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Thapliyal, K., Sharma, R.D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. Int. J. Quantum Inf. 16(5), 1850047 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lang, Y.F.: Quantum private comparison using single Bell state. Int. J. Theor. Phys. 60(11), 4030–4036 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Liu, B., Gao, F., Jia, H.Y., Huang, W., Zhang, W.W., Wen, Q.Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12(2), 887–897 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Sun, Z.W., Yu, J.P., Wang, P., Xu, L.L., Wu, C.H.: Quantum private comparison with a malicious third party. Quantum Inf. Process. 14(6), 2125–2133 (2015)

    Article  ADS  MATH  Google Scholar 

  27. Lang, Y.F.: Semi-quantum private comparison using single photons. Int. J. Theor. Phys. 57(10), 3048–3055 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, B., Liu, X.T., Wang, J., Tang, C.J.: Cryptanalysis and improvement of quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 14(12), 4593–4600 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. Lang, Y.F.: Quantum gate-based quantum private comparison. Int. J. Theor. Phys. 59(3), 833–840 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, W., Wang, Y.B.: Quantum private comparison based on GHZ entangled states. Int. J. Theor. Phys. 51(11), 3596–3604 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chang, Y.J., Tsai, C.W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12(2), 1077–1088 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z.: A protocol for the quantum private comparison of equality with \(\chi \)-type state. Int. J. Theor. Phys. 51(1), 69–77 (2012)

  33. Sun, Z.W., Long, D.Y.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52(1), 212–218 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284(1), 545–549 (2011)

    Article  ADS  Google Scholar 

  35. Lin, S., Sun, Y., Liu, X.F., Yao, Z.Q.: Quantum private comparison protocol with d-dimensional Bell states. Quantum Inf. Process. 12(1), 559–568 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Liu, W., Wang, Y.B., Sui, A.N., Ma, M.Y.: Quantum protocol for millionaire problem. Int. J. Theor. Phys. 58(7), 2106–2114 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lang, Y.F.: Quantum private magnitude comparison. Int. J. Theor. Phys. 61(4), 100 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  38. Huang, W., Wen, Q.Y., Liu, B., Su, Q., Qin, S.J., Gao, F.: Quantum anonymous ranking. Phys. Rev. A 89(3), 032325 (2014)

    Article  ADS  Google Scholar 

  39. Luo, Q.B., Yang, G.W., She, K., Li, X.Y., Wang, Y.Q., Yang, F.: Quantum anonymous ranking with d-level single-particle states. Int. J. Softw. Inform. 8(3–4), 339–343 (2014)

    Google Scholar 

  40. Lin, S., Guo, G.D., Huang, F., Liu, X.F.: Quantum anonymous ranking based on the Chinese remainder theorem. Phys. Rev. A 93(1), 012318 (2016)

    Article  ADS  Google Scholar 

  41. Wang, Q.L., Li, Y.C., Yu, C.H., He, H., Zhang, K.J.: Quantum anonymous ranking and selection with verifiability. Quantum Inf. Process. 19(5), 166 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Shi, R.H., Li, Y.F.: Privacy-preserving quantum protocol for finding the maximum value. EPJ Quantum Technol. 9(1), 13 (2022)

    Article  Google Scholar 

  43. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81(12), 2594–2597 (1998)

    Article  ADS  Google Scholar 

Download references

Funding

This work is supported by National Natural Science Foundation of China (Grant Nos.62271234,6177-2134, 61701553), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023A1515030290).

Author information

Authors and Affiliations

Authors

Contributions

Han-Xiao Kong proposed the protocols and simulated the protocols. Xia Wu and Guo-Qing Li participated in the discussion of security analysis. Han-Xiao Kong and Heng-Yue Jia wrote the main manuscript and prepared figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Heng-Yue Jia.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, HX., Jia, HY., Wu, X. et al. Robust Quantum Secure Multiparty Computation Protocols for Minimum Value Calculation in Collective Noises and Their Simulation. Int J Theor Phys 62, 172 (2023). https://doi.org/10.1007/s10773-023-05429-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05429-2

Keywords

Navigation