Abstract
In this paper, two quantum secure multiparty computation protocols for the logical AND (QSMC_AND) are proposed using decoherence-free (DF) states, which can resist collective-dephasing noise and collective-rotation noise, respectively. The protocols enable the secure calculation of the logical AND value of the parties’ single-bit secret with the assistance of a semi-honest third party (TP). Based on these protocols, quantum secure multiparty computation protocols for calculating the minimum value of parties’ n-bit secret are also designed. Moreover, some common outsider’s and insider’s attacks are discussed, and the simulations of our QSMC_AND protocols are conducted on the IBM Q cloud platform to verify the correctness and noise resistance. The results demonstrate the feasibility and effectiveness of the protocols in realistic quantum computing environments.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
References
Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nat. 509(7501), 475–478 (2014)
Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108(13), 130502 (2012)
Xu, G.B., Wen, Q.Y., Gao, F., Qin, S.J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13(12), 2587–2594 (2014)
Liu, W.J., Chen, Z.Y., Ji, S., Wang, H.B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56(10), 3164–3174 (2017)
Yang, Y.G., Li, B.R., Kang, S.Y., Chen, X.B., Zhou, Y.H., Shi, W.M.: New quantum key agreement protocols based on cluster states. Quantum Inf. Process. 18(3), 77 (2019)
Qin, H.W., Zhu, X.H., Dai, Y.W.: (t, n) threshold quantum secret sharing using the phase shift operation. Quantum Inf. Process. 14(8), 2997–3004 (2015)
Hu, W.W., Zhou, R.G., Li, X., Fan, P., Tan, C.Y.: A novel dynamic quantum secret sharing in high-dimensional quantum system. Quantum Inf. Process. 20(5), 159 (2021)
Sutradhar, K., Om, H.: Efficient quantum secret sharing without a trusted player. Quantum Inf. Process. 19(2), 73 (2020)
Sutradhar, K., Om, H.: Enhanced (t, n) threshold d-level quantum secret sharing. Sci. Rep. 11(1), 17083 (2021)
Yang, Y.G., Lei, H., Liu, Z.C., Zhou, Y.H., Shi, W.M.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15(6), 2487–2497 (2016)
Xin, X.J., He, Q.Q., Wang, Z., Yang, Q.L., Li, F.G.: Security analysis and improvement of an arbitrated quantum signature scheme. Opt. 189, 23–31 (2019)
Zhang, L., Sun, H.W., Zhang, K.J., Jia, H.Y.: An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption. Quantum Inf. Process. 16(3), 70 (2017)
Yao, A.C.: Protocols for secure computations. In: FOCS 82, 160–164 (1982)
Li, R.H., Wu, C.K., Zhang, Y.Q.: A fair and efficient protocol for the millionaires’ problem. Chin. J. Electron. 18(2), 249–254 (2009)
Li, S.D., Wang, D.S., Dai, Y.Q., Luo, P.: Symmetric cryptographic solution to Yao’s millionaires’ problem and an evaluation of secure multiparty computations. Inf. Sci. 178(1), 244–255 (2008)
Sutradhar, K., Om, H.: A generalized quantum protocol for secure multiparty summation. IEEE Trans. Circuits Syst. II Express Briefs 67(12), 2978–2982 (2020)
Sutradhar, K., Om, H.: Hybrid quantum protocols for secure multiparty summation and multiplication. Sci. Rep. 10(1), 9097 (2020)
Sutradhar, K., Om, H.: An efficient simulation for quantum secure multiparty computation. Sci. Rep. 11(1), 2206 (2021)
Sutradhar, K., Om, H.: Secret sharing based multiparty quantum computation for multiplication. Int. J. Theor. Phys. 60(9), 3417–3425 (2021)
Sutradhar, K., Om, H.: A cost-effective quantum protocol for secure multi-party multiplication. Quantum Inf. Process. 20(11), 380 (2021)
Tang, Y.H., Jia, H.Y., Wu, X., Chen, H.M., Zhang, Y.M.: Robust semi-quantum private comparison protocols against collective noises with decoherence-free states. Quantum Inf. Process. 21(3), 97 (2022)
Thapliyal, K., Sharma, R.D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. Int. J. Quantum Inf. 16(5), 1850047 (2018)
Lang, Y.F.: Quantum private comparison using single Bell state. Int. J. Theor. Phys. 60(11), 4030–4036 (2021)
Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)
Liu, B., Gao, F., Jia, H.Y., Huang, W., Zhang, W.W., Wen, Q.Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12(2), 887–897 (2013)
Sun, Z.W., Yu, J.P., Wang, P., Xu, L.L., Wu, C.H.: Quantum private comparison with a malicious third party. Quantum Inf. Process. 14(6), 2125–2133 (2015)
Lang, Y.F.: Semi-quantum private comparison using single photons. Int. J. Theor. Phys. 57(10), 3048–3055 (2018)
Zhang, B., Liu, X.T., Wang, J., Tang, C.J.: Cryptanalysis and improvement of quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 14(12), 4593–4600 (2015)
Lang, Y.F.: Quantum gate-based quantum private comparison. Int. J. Theor. Phys. 59(3), 833–840 (2020)
Liu, W., Wang, Y.B.: Quantum private comparison based on GHZ entangled states. Int. J. Theor. Phys. 51(11), 3596–3604 (2012)
Chang, Y.J., Tsai, C.W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12(2), 1077–1088 (2013)
Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z.: A protocol for the quantum private comparison of equality with \(\chi \)-type state. Int. J. Theor. Phys. 51(1), 69–77 (2012)
Sun, Z.W., Long, D.Y.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52(1), 212–218 (2013)
Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284(1), 545–549 (2011)
Lin, S., Sun, Y., Liu, X.F., Yao, Z.Q.: Quantum private comparison protocol with d-dimensional Bell states. Quantum Inf. Process. 12(1), 559–568 (2013)
Liu, W., Wang, Y.B., Sui, A.N., Ma, M.Y.: Quantum protocol for millionaire problem. Int. J. Theor. Phys. 58(7), 2106–2114 (2019)
Lang, Y.F.: Quantum private magnitude comparison. Int. J. Theor. Phys. 61(4), 100 (2022)
Huang, W., Wen, Q.Y., Liu, B., Su, Q., Qin, S.J., Gao, F.: Quantum anonymous ranking. Phys. Rev. A 89(3), 032325 (2014)
Luo, Q.B., Yang, G.W., She, K., Li, X.Y., Wang, Y.Q., Yang, F.: Quantum anonymous ranking with d-level single-particle states. Int. J. Softw. Inform. 8(3–4), 339–343 (2014)
Lin, S., Guo, G.D., Huang, F., Liu, X.F.: Quantum anonymous ranking based on the Chinese remainder theorem. Phys. Rev. A 93(1), 012318 (2016)
Wang, Q.L., Li, Y.C., Yu, C.H., He, H., Zhang, K.J.: Quantum anonymous ranking and selection with verifiability. Quantum Inf. Process. 19(5), 166 (2020)
Shi, R.H., Li, Y.F.: Privacy-preserving quantum protocol for finding the maximum value. EPJ Quantum Technol. 9(1), 13 (2022)
Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81(12), 2594–2597 (1998)
Funding
This work is supported by National Natural Science Foundation of China (Grant Nos.62271234,6177-2134, 61701553), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023A1515030290).
Author information
Authors and Affiliations
Contributions
Han-Xiao Kong proposed the protocols and simulated the protocols. Xia Wu and Guo-Qing Li participated in the discussion of security analysis. Han-Xiao Kong and Heng-Yue Jia wrote the main manuscript and prepared figures. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Competing Interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kong, HX., Jia, HY., Wu, X. et al. Robust Quantum Secure Multiparty Computation Protocols for Minimum Value Calculation in Collective Noises and Their Simulation. Int J Theor Phys 62, 172 (2023). https://doi.org/10.1007/s10773-023-05429-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10773-023-05429-2