Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Verifiable Multi-Dimensional (t,n) Threshold Quantum Secret Sharing Based on Quantum Walk

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The latest verifiable threshold quantum state sharing schemes have advantages over efficiency and security, since the secret message can be expanded to multiple dimension. However, these schemes could be attacked by either unauthenticated participants or invalidated secret shadows provided by authenticated participants. To overcome the shortcomings of current schemes and achieve greater efficiency, a novel verifiable multi-dimensional (t, n) threshold quantum state sharing scheme is proposed. The transformed secret state is shared by the multi-coin quantum walk. The identity of the participant and the validation of the secret are verified with help of the rotational unitary operator and Hash function. The correctness of the proposed protocol is proved by a determined case and a experimental simulation result performed on the IBM Quantum Experience. The results show that, the proposed scheme has higher security and superior efficiency under similar quantum resources compared with the three other schemes. This protocol can prevent attacks strategies performed by the illegal participant and dishonest participants with the verification phase. It will be widely used for online e-government, e-business systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Code Availability

Not applicable.

References

  1. Feng, Y.Y., Shi, R.H., Guo, Y.: Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states. Chin. Phys. B 27(2), 020302 (2018)

    Article  ADS  Google Scholar 

  2. Lou, X.P., Wang, Y., Long, H., Yang, Y.G., Li, J.: Sequential quantum multiparty signature based on quantum fourier transform and chaotic system. IEEE. Access. 8, 13218–13227 (2020)

    Article  Google Scholar 

  3. Li, X.Y., Chang, Y., Zhang, S.B., Dai, J.Q., Zheng, T.: Quantum blind signature scheme based on quantum walk. Int. J. Theor. Phys. 59 (7), 2059–2073 (2020)

    Article  MathSciNet  Google Scholar 

  4. He, Q.Q., Xin, X.J., Yang, Q.L.: Security analysis and improvement of a quantum multi-signature protocol. Quantum Inf. Process. 20(1), 1–21 (2021)

    Article  MathSciNet  Google Scholar 

  5. Xia, C.Y., Li, H.F., Hu, J.: A novel quantum blind signature protocol based on five-particle entangled state. Eur. Phys. J. Plus. 136(2), 1–12 (2021)

    ADS  Google Scholar 

  6. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (1984)

    Article  MathSciNet  Google Scholar 

  7. Chai, G., Cao, Z.W., Liu, W.Q., Wang, S.Y., Huang, P., Zeng, G.H.: Parameter estimation of atmospheric continuous-variable quantum key distribution. Phys. Rev. A 99(3), 032326 (2019)

    Article  ADS  Google Scholar 

  8. Chai, G., Huang, P., Cao, Z.W., Zeng, G.H.: Suppressing excess noise for atmospheric continuous-variable quantum key distribution via adaptive optics approach. J. Phys. 22(10), 103009 (2020)

    MathSciNet  Google Scholar 

  9. Srikara, S., Thapliyal, K., Pathak, A.: Continuous variable B92 quantum key distribution protocol using single photon added and subtracted coherent states. Quantum Inf. Process. 19(10), 1–16 (2020)

    Article  MathSciNet  Google Scholar 

  10. Li, X., Yuan, H.W., Zhang, C.M., Wang, Q.: One-decoy state reference-frame-independent quantum key distribution. Chin. Phys. B 29 (7), 070303 (2020)

    Article  ADS  Google Scholar 

  11. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett 89(18), 187902 (2002)

    Article  ADS  Google Scholar 

  12. Chai, G., Cao, Z.W., Liu, W.Q., Zhang, M.H., Liang, K.X., Peng, J.Y.: Novel continuous-variable quantum secure direct communication and its security analysis. Laser Phys. Lett 16(9), 095207 (2019)

    Article  ADS  Google Scholar 

  13. Yang, L., Wu, J.W., Lin, Z.S., Yin, L.G., Long, G.L.: Quantum secure direct communication with entanglement source and single-photon measurement. Sci. China Phys. Mech. Astron 63(11), 110311 (2020)

    Article  ADS  Google Scholar 

  14. Yin, A., Lin, W.B., He, K.M., Han, Z.F., Fan, P.: Controlled bidirectional quantum secure direct communication protocol based on Grover’s algorithm. Mod. Phys. Lett. A 35(28), 2050228 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  15. Cao, Z.W., Wang, L., Liang, K.X., Chai, G., Peng, J.Y.: Continuous-variable quantum secure direct communication based on gaussian mapping. Phys. Rev. Appl. 16(2), 024012 (2021)

    Article  ADS  Google Scholar 

  16. Zhang, Z.S., Zeng, G.H., Zhou, N.R., Jin, X.: Quantum identity authentication based on ping-pong technique for photons. Phys. Lett. A. 356(3), 199–205 (2006)

    Article  ADS  Google Scholar 

  17. Nikolopoulos, G.M.: Continuous-variable quantum authentication of physical unclonable keys: Security against an emulation attack. Phys. Rev. A 97 (1), 012324 (2018)

    Article  ADS  Google Scholar 

  18. Chen, Z.Y., Zhou, K.L., Qin, L.: Quantum identity authentication scheme of vehicular ad-hoc networks. Int. J. Theor. Phys. 58(1), 40–57 (2019)

    Article  Google Scholar 

  19. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  20. Hillery, M., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A. 59(3), 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  21. Qin, H.W., Zhu, X.H., Dai, Y.W.: (t, n) Threshold quantum secret sharing using the phase shift operation. Quantum Inf. Process. 14(8), 2997–3004 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Song, Y., Li, Y.M., Wang, W.H.: Multiparty quantum direct secret sharing of classical information with bell states and bell measurements. Int. J. Theor. Phys. 57(5), 1559–1571 (2018)

    Article  Google Scholar 

  23. Zha, X.W., Jiang, R.X., Wang, M.R.: Two schemes of multiparty quantum direct secret sharing via a six-particle GHZ state. Commun. Theor. Phys. 72(2), 025102 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  24. Yin, A.H., Chen, T.: Authenticated semi-quantum secret sharing based on GHZ-type states. Int. J. Theor. Phys. 60(1), 265–273 (2021)

    Article  MathSciNet  Google Scholar 

  25. Li, X.Y., Chang, Y., Zhang, S.B.: Quantum secret sharing scheme with credible authentication based on quantum walk. KSII T. Internet Inf. 14 (7), 3116–3133 (2020)

    Google Scholar 

  26. Tavakoli, A., Herbauts, I., Zukowski, M., Bourennane, M.: Secret sharing with a single d-level quantum system. Phys. Rev. A 92(3), 030302 (2015)

    Article  ADS  Google Scholar 

  27. Song, X.L., Liu, Y.B., Deng, H.Y., Xiao, Y.G.: (t, n) threshold d-level quantum secret sharing. Sci. Rep. 7(1), 6366 (2017)

    Article  ADS  Google Scholar 

  28. Mashhadi, S.: Improvement of a (t, n) threshold d-level quantum secret sharing scheme. Journal of Applied Security Research, 1–12 (2020)

  29. Qin, H.W., Tso, R., Dai, Y.W.: Multi-dimensional quantum state sharing based on quantum Fourier transform. Quantum Inf. Process. 17(3), 1–12 (2018)

    Article  MathSciNet  Google Scholar 

  30. Mashhadi, S.: General secret sharing based on quantum Fourier transform. Quantum Inf. Process. 18(4), 1–15 (2019)

    Article  MathSciNet  Google Scholar 

  31. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the thirty-third annual ACM symposium on theory of computing, pp. 50–59 (2000)

  32. Brun, T.A., Carteret, H.A., Ambainis, A.: Quantum walks driven by many coins. Phys. Rev. A 67(5), 052317 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  33. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Am. J. Phys. 70, 558 (2002)

    Article  ADS  Google Scholar 

  34. Hayashi, M., Tsurumaru, T.: More efficient privacy amplification with less random seeds via dual universal hash function. IEEE T. Inform. Theory. 62(4), 2213–2232 (2016)

    Article  MathSciNet  Google Scholar 

  35. Li, H.S., Xu, Y.S., Qin, Y.B., Fu, D.L., Xia, H.Y.: The addition and subtraction of quantum matrix based on GNEQR. Int. J. Quantum Inf 17 (7), 1950056 (2019)

    Article  MathSciNet  Google Scholar 

  36. Buhrman, H., Cleve, R., Watrous, J., De Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett 87(16), 167902 (2001)

    Article  ADS  Google Scholar 

  37. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635–5638 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Project supported by Natural Science Foundation of Hunan Province (2021JJ30454), Hunan Provincial Science and Technology Project Foundation (2018TP1018).

Funding

Project supported by Natural Science Foundation of Hunan Province (2021JJ30454), Hunan Provincial Science and Technology Project Foundation (2018TP1018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Lou.

Ethics declarations

Conflict of Interests

Not applicable.

Additional information

Availability of data and material

The data sets supporting the results of this article are included within the article and its additional files.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Lou, X., Fan, Z. et al. Verifiable Multi-Dimensional (t,n) Threshold Quantum Secret Sharing Based on Quantum Walk. Int J Theor Phys 61, 24 (2022). https://doi.org/10.1007/s10773-022-05009-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05009-w

Keywords

Navigation