Abstract
The latest verifiable threshold quantum state sharing schemes have advantages over efficiency and security, since the secret message can be expanded to multiple dimension. However, these schemes could be attacked by either unauthenticated participants or invalidated secret shadows provided by authenticated participants. To overcome the shortcomings of current schemes and achieve greater efficiency, a novel verifiable multi-dimensional (t, n) threshold quantum state sharing scheme is proposed. The transformed secret state is shared by the multi-coin quantum walk. The identity of the participant and the validation of the secret are verified with help of the rotational unitary operator and Hash function. The correctness of the proposed protocol is proved by a determined case and a experimental simulation result performed on the IBM Quantum Experience. The results show that, the proposed scheme has higher security and superior efficiency under similar quantum resources compared with the three other schemes. This protocol can prevent attacks strategies performed by the illegal participant and dishonest participants with the verification phase. It will be widely used for online e-government, e-business systems.
Similar content being viewed by others
Code Availability
Not applicable.
References
Feng, Y.Y., Shi, R.H., Guo, Y.: Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states. Chin. Phys. B 27(2), 020302 (2018)
Lou, X.P., Wang, Y., Long, H., Yang, Y.G., Li, J.: Sequential quantum multiparty signature based on quantum fourier transform and chaotic system. IEEE. Access. 8, 13218–13227 (2020)
Li, X.Y., Chang, Y., Zhang, S.B., Dai, J.Q., Zheng, T.: Quantum blind signature scheme based on quantum walk. Int. J. Theor. Phys. 59 (7), 2059–2073 (2020)
He, Q.Q., Xin, X.J., Yang, Q.L.: Security analysis and improvement of a quantum multi-signature protocol. Quantum Inf. Process. 20(1), 1–21 (2021)
Xia, C.Y., Li, H.F., Hu, J.: A novel quantum blind signature protocol based on five-particle entangled state. Eur. Phys. J. Plus. 136(2), 1–12 (2021)
Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (1984)
Chai, G., Cao, Z.W., Liu, W.Q., Wang, S.Y., Huang, P., Zeng, G.H.: Parameter estimation of atmospheric continuous-variable quantum key distribution. Phys. Rev. A 99(3), 032326 (2019)
Chai, G., Huang, P., Cao, Z.W., Zeng, G.H.: Suppressing excess noise for atmospheric continuous-variable quantum key distribution via adaptive optics approach. J. Phys. 22(10), 103009 (2020)
Srikara, S., Thapliyal, K., Pathak, A.: Continuous variable B92 quantum key distribution protocol using single photon added and subtracted coherent states. Quantum Inf. Process. 19(10), 1–16 (2020)
Li, X., Yuan, H.W., Zhang, C.M., Wang, Q.: One-decoy state reference-frame-independent quantum key distribution. Chin. Phys. B 29 (7), 070303 (2020)
Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett 89(18), 187902 (2002)
Chai, G., Cao, Z.W., Liu, W.Q., Zhang, M.H., Liang, K.X., Peng, J.Y.: Novel continuous-variable quantum secure direct communication and its security analysis. Laser Phys. Lett 16(9), 095207 (2019)
Yang, L., Wu, J.W., Lin, Z.S., Yin, L.G., Long, G.L.: Quantum secure direct communication with entanglement source and single-photon measurement. Sci. China Phys. Mech. Astron 63(11), 110311 (2020)
Yin, A., Lin, W.B., He, K.M., Han, Z.F., Fan, P.: Controlled bidirectional quantum secure direct communication protocol based on Grover’s algorithm. Mod. Phys. Lett. A 35(28), 2050228 (2020)
Cao, Z.W., Wang, L., Liang, K.X., Chai, G., Peng, J.Y.: Continuous-variable quantum secure direct communication based on gaussian mapping. Phys. Rev. Appl. 16(2), 024012 (2021)
Zhang, Z.S., Zeng, G.H., Zhou, N.R., Jin, X.: Quantum identity authentication based on ping-pong technique for photons. Phys. Lett. A. 356(3), 199–205 (2006)
Nikolopoulos, G.M.: Continuous-variable quantum authentication of physical unclonable keys: Security against an emulation attack. Phys. Rev. A 97 (1), 012324 (2018)
Chen, Z.Y., Zhou, K.L., Qin, L.: Quantum identity authentication scheme of vehicular ad-hoc networks. Int. J. Theor. Phys. 58(1), 40–57 (2019)
Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)
Hillery, M., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A. 59(3), 1829 (1999)
Qin, H.W., Zhu, X.H., Dai, Y.W.: (t, n) Threshold quantum secret sharing using the phase shift operation. Quantum Inf. Process. 14(8), 2997–3004 (2015)
Song, Y., Li, Y.M., Wang, W.H.: Multiparty quantum direct secret sharing of classical information with bell states and bell measurements. Int. J. Theor. Phys. 57(5), 1559–1571 (2018)
Zha, X.W., Jiang, R.X., Wang, M.R.: Two schemes of multiparty quantum direct secret sharing via a six-particle GHZ state. Commun. Theor. Phys. 72(2), 025102 (2020)
Yin, A.H., Chen, T.: Authenticated semi-quantum secret sharing based on GHZ-type states. Int. J. Theor. Phys. 60(1), 265–273 (2021)
Li, X.Y., Chang, Y., Zhang, S.B.: Quantum secret sharing scheme with credible authentication based on quantum walk. KSII T. Internet Inf. 14 (7), 3116–3133 (2020)
Tavakoli, A., Herbauts, I., Zukowski, M., Bourennane, M.: Secret sharing with a single d-level quantum system. Phys. Rev. A 92(3), 030302 (2015)
Song, X.L., Liu, Y.B., Deng, H.Y., Xiao, Y.G.: (t, n) threshold d-level quantum secret sharing. Sci. Rep. 7(1), 6366 (2017)
Mashhadi, S.: Improvement of a (t, n) threshold d-level quantum secret sharing scheme. Journal of Applied Security Research, 1–12 (2020)
Qin, H.W., Tso, R., Dai, Y.W.: Multi-dimensional quantum state sharing based on quantum Fourier transform. Quantum Inf. Process. 17(3), 1–12 (2018)
Mashhadi, S.: General secret sharing based on quantum Fourier transform. Quantum Inf. Process. 18(4), 1–15 (2019)
Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the thirty-third annual ACM symposium on theory of computing, pp. 50–59 (2000)
Brun, T.A., Carteret, H.A., Ambainis, A.: Quantum walks driven by many coins. Phys. Rev. A 67(5), 052317 (2003)
Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Am. J. Phys. 70, 558 (2002)
Hayashi, M., Tsurumaru, T.: More efficient privacy amplification with less random seeds via dual universal hash function. IEEE T. Inform. Theory. 62(4), 2213–2232 (2016)
Li, H.S., Xu, Y.S., Qin, Y.B., Fu, D.L., Xia, H.Y.: The addition and subtraction of quantum matrix based on GNEQR. Int. J. Quantum Inf 17 (7), 1950056 (2019)
Buhrman, H., Cleve, R., Watrous, J., De Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett 87(16), 167902 (2001)
Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635–5638 (2000)
Acknowledgements
Project supported by Natural Science Foundation of Hunan Province (2021JJ30454), Hunan Provincial Science and Technology Project Foundation (2018TP1018).
Funding
Project supported by Natural Science Foundation of Hunan Province (2021JJ30454), Hunan Provincial Science and Technology Project Foundation (2018TP1018).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interests
Not applicable.
Additional information
Availability of data and material
The data sets supporting the results of this article are included within the article and its additional files.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, Y., Lou, X., Fan, Z. et al. Verifiable Multi-Dimensional (t,n) Threshold Quantum Secret Sharing Based on Quantum Walk. Int J Theor Phys 61, 24 (2022). https://doi.org/10.1007/s10773-022-05009-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10773-022-05009-w