Abstract
The 2D-complex Riesz transform is an extension of the Hilbert transform to images. It can be used to model local image structure as a superposition of sinusoids, and to construct 2D steerable wavelets. In this paper we propose to model local image structure as the superposition of a 2D steerable wavelet at multiple amplitudes and orientations. These parameters are estimated by applying recent developments in super-resolution theory. Using 2D steerable wavelets corresponding to line or edge segments then allows for the underlying structure of image features such as junctions and edges to be determined.
The first author is supported by JCU and CSIRO scholarships. This research is part of the CSIRO Transformational Biology Capability Platform.
The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-02895-8_64
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Newell, A., Griffin, L.: Natural Image Character Recognition Using Oriented Basic Image Features. In: Proc. Int. Conf. Digital Image Computing Techniques and Applications, pp. 191–196 (December 2011)
Felsberg, M., Sommer, G.: The monogenic signal. IEEE Trans. Signal Process. 49(12), 3136–3144 (2001)
Zang, D., Sommer, G.: The Monogenic Curvature Scale-Space. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 320–332. Springer, Heidelberg (2006)
Wietzke, L., Sommer, G.: The Signal Multi-Vector. J. Math. Imaging and Vision 37(2), 132–150 (2010)
Fleischmann, O., Wietzke, L., Sommer, G.: Image Analysis by Conformal Embedding. J. Math. Imaging and Vision 40(3), 305–325 (2011)
Unser, M., Van De Ville, D.: Wavelet steerability and the higher-order Riesz transform. IEEE Trans. Image Process. 19(3), 636–652 (2010)
Unser, M., Chenouard, N.: A unifying parametric framework for 2D steerable wavelet transforms. SIAM J. Imaging Sci. 6(1), 102–135 (2012)
Candes, E., Fernandez-Granda, C.: Towards a mathematical theory of super-resolution. arXiv preprint arXiv:1203.5871 (2012)
Candes, E., Fernandez-Granda, C.: Super-resolution from noisy data. arXiv preprint arXiv:1211.0290 (2012)
Marchant, R., Jackway, P.: Feature detection from the maximal response to a spherical quadrature filter set. In: Proc. Int. Conf. Digital Image Computing Techniques and Applications (December 2012)
Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13(9), 891–906 (1991)
Mühlich, M., Friedrich, D., Aach, T.: Design and Implementation of Multisteerable Matched Filters. IEEE Trans. Pattern Anal. Mach. Intell. 34(2), 279–291 (2012)
Ward, J., Chaudhury, K., Unser, M.: Decay properties of Riesz transforms and steerable wavelets. arXiv preprint arXiv:1301.2525 (2013)
Boukerroui, D., Noble, J., Brady, M.: On the Choice of Band-Pass Quadrature Filters. J. Math. Imaging and Vision 21(1), 53–80 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Marchant, R., Jackway, P. (2013). Modelling Line and Edge Features Using Higher-Order Riesz Transforms. In: Blanc-Talon, J., Kasinski, A., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2013. Lecture Notes in Computer Science, vol 8192. Springer, Cham. https://doi.org/10.1007/978-3-319-02895-8_39
Download citation
DOI: https://doi.org/10.1007/978-3-319-02895-8_39
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02894-1
Online ISBN: 978-3-319-02895-8
eBook Packages: Computer ScienceComputer Science (R0)