Abstract
Splines and multiresolution are two independent concepts, which – considered together – yield a vast variety of bases for image processing and image analysis. The idea of a multiresolution analysis is to construct a ladder of nested spaces that operate as some sort of mathematical looking glass. It allows to separate coarse parts in a signal or in an image from the details of various sizes. Spline functions are piecewise or domainwise polynomials in one dimension (1D) resp. nD. There is a variety of spline functions that generate multiresolution analyses.
The viewpoint in this chapter is the modeling of such spline functions in frequency domain via Fourier decay to generate functions with specified smoothness in time domain resp. space domain. The mathematical foundations are presented and illustrated at the example of cardinal B-splines as generators of multiresolution analyses. Other spline models such as complex B-splines, polyharmonic splines, hexagonal splines, and others are considered. For all these spline families exist fast and stable multiresolution algorithms which can be elegantly implemented in frequency domain. The chapter closes with a look on open problems in the field.
Similar content being viewed by others
References
Aldroubi, A., Unser, M.A. (eds.): Wavelets in Medicine and Biology. CRC, Boca Raton (1996)
Baraniuk, R.: Compressive Sensing. IEEE Signal Process. Mag. 4(4), 118–120, 124 (2007)
Bartels, R.H., Bealty, J.C., Beatty, J.C.: An Introduction to Splines for Use in Computer Graphics and Geometric Modeling. Morgan Kaufman, Los Altos (1995)
Battle, G.: A block spin construction of ondelettes. Part 1: Lemarié functions. Commun. Math. Phys. 110, 601–615 (1987)
Blu, T., Unser, M.: The fractional spline wavelet transform: definition and implementation. In: Proceedings of the 25th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’00), Istanbul, 5–9 June 2000, vol. 1, pp. 512–515 (2000)
Blu, T., Unser, M.: A complete family of scaling functions: the (α, τ)-fractional splines. In: Proceedings of the 28th International Conference on Acoustics, Speech, and Signal Processing (ICASSP’03), Hong Kong SAR, 6–10 Apr 2003, vol. 6, pp. 421–424 (2003)
Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2003)
Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)
Candès, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)
Champeney, D.C.: A Handbook of Fourier Theorems. Cambridge University Press, Cambridge (1987)
Chen, H.-l.: Complex Harmonic Splines, Periodic Quasi-wavelets, Theory and Applications. Kluwer Academic, Dordrecht (2000)
Choi, J.Y., Kim, M.W., Seong, W., Ye, J.C.: Compressed sensing metal artifact removal in dental CT. In: Proceedings of IEEE International Symposium on Biomedical Imaging (ISBI), 28 June–1 July 2009, Boston, pp. 334–337 (2009)
Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2003)
Christensen, O.: Frames and Bases: An Introductory Course. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2008)
Chui, C.K.: Multivariate Splines. Society for Industrial and Applied Mathematics, Philadelphia (1988)
Chui, C.: Wavelets—a Tutorial in Theory and Practice. Academic, San Diego (1992)
Chui, C.K. (ed.): Wavelets: A Tutorial in Theory and Applications. Academic, Boston (1992)
Condat, L.: Image database. Online resource. http://www.greyc.ensicaen.fr/_lcondat/imagebase.html (2010). (Version of 22 Apr 2010)
Condat, L., Forster-Heinlein, B., Van De Ville, D.: A new family of rotation-covariant wavelets on the hexagonal lattice. In: SPIE Wavelets XII, San Diego, Aug 2007
Dahmen, W., Kurdila, A., Oswald, P. (eds.): Multiscale Wavelet Methods for Partial Differential Equations. Volume 6 of Wavelet Analysis and Its Applications. Academic, San Diego (1997)
Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia (1992)
de Boor, C., Höllig, K., Riemenschneider, S.: Box Splines. Volume 98 of Applied Mathematical Sciences. Springer, New York (1993)
de Boor, C., Devore, R.A., Ron, A.: Approximation from shift invariant subspaces of \(\mathrm{L}_{2}(\mathrm{R}^{\mathrm{d}})\). Trans. Am. Math. Soc. 341(2), 787–806 (1994)
Dierckx, P.: Curve and Surface Fitting with Splines. McGraw-Hill, New York (1993)
Feilner, M., Van De Ville, D., Unser, M.: An orthogonal family of quincunx wavelets with continuously adjustable order. IEEE Trans. Image Process. 4(4), 499–510 (2005)
Forster, B., Massopust, P.: Statistical encounters with complex B-splines. Constr. Approx. 29(3), 325–344 (2009)
Forster, B., Blu, T., Unser, M.: Complex B-splines. Appl. Comput. Harmon. Anal. 20(2), 261–282 (2006)
Forster, B., Blu, T., Van De Ville, D., Unser, M.: Shiftinvariant spaces from rotation-covariant functions. Appl. Comput. Harmon. Anal. 25(2), 240–265 (2008)
Frikel, J.: A new framework for sparse regularization in limited angle x-ray tomography. In: IEEE International Symposium on Biomedical Imaging, Rotterdam (2010)
Giles, R.C., Kotiuga, P.R., Mansuripur, M.: Parallel micromagnetic simulations using Fourier methods on a regular hexagonal lattice. IEEE Trans. Magn. 7(5), 3815–3818 (1991)
Grigoryan, A.M.: Efficient algorithms for computing the 2-D hexagonal Fourier transforms. IEEE Trans Signal Process. 50(6), 1438–1448 (2002)
Hales, T.C.: The honeycomb conjecture. Discret. Comput. Geom. 25, 1–22 (2001)
Heil, C., Walnut, D.F.: Fundamental Papers in Wavelet Theory, New edn. Princeton University Press, Princeton (2006)
Jones, D.S.: Generalised Functions. McGraw-Hill, London (1966)
Lai, M.-J., Schumaker, L.L.: Spline Functions on Triangulations. Cambridge University Press, Cambridge (2007)
Laine, A.F., Schuler, S., Fan, J., Huda, W.: Mammographic feature enhancement by multiscale analysis. IEEE Trans. Med. Imaging 13(4), 725–740 (1994)
Legrand, P.: Local regularity and multifractal methods for image and signal analysis. In: Abry, P., Gonçalves, P., Véhel, L. (eds.) Scaling, Fractals and Wavelets, chap. 11. Wiley-ISTE, London (2009)
Lemarié, P.-G.: Ondelettes a localisation exponentielle. J. Math. Pures Appl. 67, 227–236 (1988)
Lesage, F., Provost, J.: The application of compressed sensing for photo-acoustic tomography. IEEE Trans. Med. Imaging 28(4), 585–594 (2009)
Lipow, P.R., Schoenberg, I.J.: Cardinal interpolation and spline functions. III: Cardinal hermite interpolation. Linear Algebra Appl. 6, 273–304 (1973)
Louis, A.K., Maaß, P., Rieder, A.: Wavelets: Theory and Applications. Wiley, New York (1997)
Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)
Mallat, S.: Multiresolution approximations and wavelet orthonormal bases of L2(R). Trans. Am. Math. Soc. 315, 69–87 (1989)
Mallat, S.G.: A Wavelet Tour of Signal Processing. Academic, San Diego (1998)
Mersereau, R.M.: The processing of hexagonally sampled two-dimensional signals. Proc. IEEE 67(6), 930–949 (1979)
Meyer, Y.: Wavelets and Operators. Cambridge University Press, Cambridge (1992)
Middleton, L., Sivaswamy, J.: Hexagonal Image Processing: A Practical Approach. Advances in Pattern Recognition. Springer, Berlin (2005)
Nicolier, F., Laligant, O., Truchetet, F.: B-spline quincunx wavelet transforms and implementation in Fourier domain. Proc. SPIE 3522, 223–234 (1998)
Nicolier, F., Laligant, O., Truchetet, F.: Discrete wavelet transform implementation in Fourier domain for multidimensional signal. J. Electron. Imaging 11, 338–346 (2002)
Nürnberger, G.: Approximation by Spline Functions. Springer, Berlin (1989)
Plonka, G., Tasche, M.: On the computation of periodic spline wavelets. Appl. Comput. Harmon. Anal. 2, 1–14 (1995)
Püschel, M., Rötteler, M.: Algebraic signal processing theory: 2D spatial hexagonal lattice. IEEE Trans. Image Proc. 16(6), 1506–1521 (2007)
Rabut, C.: Elementary m-harmonic cardinal B-splines. Numer. Algorithms 2, 39–62 (1992)
Rabut, C.: High level m-harmonic cardinal B-splines. Numer. Algorithms 2, 63–84 (1992)
Rice University: Compressive sensing resources. Online resource. http://dsp.rice.edu/cs (2010). (Version of 30 Apr 2010)
Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1991)
Sablonnière, P., Sbibih, D.: B-splines with hexagonal support on a uniform three-direction mesh of the plane. C. R. Acad. Sci. Paris Sér. I 319, 227–282 (1994)
Schempp, W.: Complex Contour Integral Representation of Cardinal Spline Functions. Volume 7 of Contemporary Mathematics. American Mathematical Society, Providence (1982)
Schoenberg, I.J.: Contributions to the problem of approximation of equidistant data by analytic functions. Part A – on the problem of osculatory interpolation. A second class of analytic approximation formulae. Q. Appl. Math. 4, 112–141 (1946)
Schoenberg, I.J.: Contributions to the problem of approximation of equidistant data by analytic functions. Part A – on the problem of smoothing or graduation. A first class of analytic approximation formulae. Q. Appl. Math. 4, 45–99 (1946)
Schoenberg, I.J.: Cardinal interpolation and spline functions. J. Approx. Theory 2, 167–206 (1969)
Schoenberg, I.J.: Cardinal interpolation and spline functions. II: interpolation of data of power growth. J. Approx. Theory 6, 404–420 (1972)
Schwartz, L.: Théorie des distributions. Hermann, Paris (1998)
Unser, M.: Splines: a perfect fit for medical imaging. In: Sonka, M., Fitzpatrick, J.M. (eds.) Progress in Biomedical Optics and Imaging, vol. 3, no. 22, vol. 4684, Part I of Proceedings of the SPIE International Symposium on Medical Imaging: Image Processing (MI’02), San Diego, 24–28 Feb 2002, pp. 225–236
Unser, M., Blu, T.: Fractional splines and wavelets. SIAM Rev. 42(1), 43–67 (2000)
Unser, M., Aldroubi, A., Eden, M.: Fast B-spline transforms for continuous image representation and interpolation. IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 277–285 (1991)
Unser, M., Aldroubi, A., Eden, M.: On the asymptotic convergence of B-spline wavelets to Gabor functions. IEEE Trans. Inf. Theory 38, 864–872 (1992)
Unser, M., Aldroubi, A., Eden, M.: B-spline signal processing: part I—Theory. IEEE Trans. Signal Process. 41(2), 821–833 (1993)
Unser, M., Aldroubi, A., Eden, M.: B-spline signal processing: part II—Efficient design and applications. IEEE Trans. Signal Process. 41(2), 834–848 (1993)
Van De Ville, D., Blu, T., Unser, M., Philips, W., Lemahieu, I., Van de Walle, R.: Hex-splines: a novel spline family for hexagonal lattices. IEEE Trans. Image Process. 13(6), 758–772 (2004)
Van De Ville, D., Blu, T., Unser, M.: Isotropic polyharmonic B-splines: scaling functions and wavelets. IEEE Trans. Image Process. 14(11), 1798–1813 (2005)
Watson, A.B., Ahumuda, A.J., Jr.: Hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex. IEEE Trans. Biomed. Eng. 36(1), 97–106 (1989)
Wendt, H., Roux, S.G., Jaffard, S., Abry, P.: Wavelet leaders and bootstrap for multifractal analysis of images. Signal Process. 89, 1100–1114 (2009)
Wojtaszczyk, P.: A Mathematical Introduction to Wavelets. Volume 37 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge (1997)
Young, R.: An Introduction to Nonharmonic Fourier Series. Academic, New York (1980) (revised first edition 2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media New York
About this entry
Cite this entry
Forster, B. (2014). Splines and Multiresolution Analysis. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27795-5_28-5
Download citation
DOI: https://doi.org/10.1007/978-3-642-27795-5_28-5
Received:
Accepted:
Published:
Publisher Name: Springer, Berlin, Heidelberg
Online ISBN: 978-3-642-27795-5
eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering