Nothing Special   »   [go: up one dir, main page]

Skip to main content

Combining Event Calculus and Description Logic Reasoning via Logic Programming

  • Conference paper
  • First Online:
Frontiers of Combining Systems (FroCoS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12941))

Included in the following conference series:

Abstract

The paper introduces a knowledge representation language that combines the event calculus with description logic in a logic programming framework. The purpose is to provide the user with an expressive language for modelling and analysing systems that evolve over time. The approach is exemplified with the logic programming language as implemented in the Fusemate system. The paper extends Fusemate’s rule language with a weakly DL-safe interface to the description logic \(\mathcal ALCIF\) and adapts the event calculus to this extended language. This way, time-stamped ABoxes can be manipulated as fluents in the event calculus. All that is done in the frame of Fusemate’s concept of stratification by time. The paper provides conditions for soundness and completeness where appropriate. Using an elaborated example it demonstrates the interplay of the event calculus, description logic and logic programming rules for computing possible models as plausible explanations of the current state of the modelled system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(\mathcal ALCIF\) is the well-known description logic \(\mathcal ALC\) extended with inverse roles and functional roles. See [5] for background on description logics.

  2. 2.

    This definition of head is actually simplified as Fusemate offers an additional head operator for belief revision, see [11]. This is ignored here.

  3. 3.

    The variables \( var (t)\) in the special form have to be excluded from that because they are quantified within their “” body scope. To avoid name conflicts, we assume that \( var (t) \cap fvar (B') = \emptyset \) for all bodies \(B'\) such that \(B = B'\) or B occurs in \(B'\).

  4. 4.

    Body matcher are represented internally in the Scala runtime system without explicit grounding.

  5. 5.

    The concrete Fusemate syntax is but we stick with the better readable “:”-syntax. TBoxes have similar syntax and are typically bound to (Scala) variables like in the example. In concrete syntax, free constant, function and predicate symbols start with a capital letter, variables with a lower case letter. An underscore is an anonymous variable.

  6. 6.

    Access to I is unusual for logic programming systems. See [12] for a discussion of this features.

  7. 7.

    Actually, events can be inserted in retrospect using Fusemate’s revision operator, restarting the model computation from there. The paper [11] already has a “supply-chain” example for that.

References

  1. Artikis, A., Skarlatidis, A., Portet, F., Paliouras, G.: Logic-based event recognition. Knowl. Eng. Rev. 27(4), 469–506 (2012)

    Article  Google Scholar 

  2. Baader, F., et al.: A novel architecture for situation awareness systems. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp. 77–92. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02716-1_7

    Chapter  Google Scholar 

  3. Baader, F., Borgwardt, S., Lippmann, M.: Temporal conjunctive queries in expressive description logics with transitive roles. In: Pfahringer, B., Renz, J. (eds.) AI 2015. LNCS (LNAI), vol. 9457, pp. 21–33. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26350-2_3

    Chapter  Google Scholar 

  4. Baader, F., Ghilardi, S., Lutz, C.: LTL over description logic axioms. ACM Trans. Comput. Logic - TOCL 13, 1–32 (2008)

    MATH  Google Scholar 

  5. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  6. Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Computing optimal repairs of quantified ABoxes w.r.t. static \(\cal{EL}\) TBoxes. In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 309–326. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5_18

    Chapter  Google Scholar 

  7. Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Computing compliant anonymisations of quantified ABoxes w.r.t. \(\cal{EL} \) policies. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12506, pp. 3–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62419-4_1

    Chapter  Google Scholar 

  8. Baader, F., Lippmann, M., Liu, H.: Using causal relationships to deal with the ramification problem in action formalisms based on description logics. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010. LNCS, vol. 6397, pp. 82–96. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16242-8_7

    Chapter  Google Scholar 

  9. Baader, F., Lutz, C., Miličic, M., Sattler, U., Wolter, F.: Integrating description logics and action formalisms: first results. In: Proceedings of the 20th National Conference on Artificial Intelligence, AAAI 2005, vol. 2, pp. 572–577. AAAI Press (2005)

    Google Scholar 

  10. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Masellis, R., Felli, P., Montali, M.: Description logic knowledge and action bases. J. Artif. Intell. Res. 46, 651–686 (2013)

    Article  MathSciNet  Google Scholar 

  11. Baumgartner, P.: Possible models computation and revision – a practical approach. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12166, pp. 337–355. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51074-9_19

    Chapter  Google Scholar 

  12. Baumgartner, P.: The Fusemate logic programming system. In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 589–601. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5_34

    Chapter  Google Scholar 

  13. Baumgartner, P., Furbach, U., Niemelä, I.: Hyper tableaux. In: Alferes, J.J., Pereira, L.M., Orlowska, E. (eds.) JELIA 1996. LNCS, vol. 1126, pp. 1–17. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61630-6_1

    Chapter  Google Scholar 

  14. Beck, H., Dao-Tran, M., Eiter, T.: LARS: a logic-based framework for analytic reasoning over streams. Artif. Intell. 261, 16–70 (2018)

    Article  MathSciNet  Google Scholar 

  15. Drescher, C., Thielscher, M.: Integrating action calculi and description logics. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 68–83. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74565-5_8

    Chapter  Google Scholar 

  16. Eiter, T., Ianni, G., Krennwallner, T., Polleres, A.: Rules and ontologies for the semantic web. In: Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori, M., Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 1–53. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85658-0_1

    Chapter  Google Scholar 

  17. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the Semantic Web. Artif. Intell. 172(12), 1495–1539 (2008)

    Article  MathSciNet  Google Scholar 

  18. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9, 365–385 (1991)

    Article  Google Scholar 

  19. Giacomo, G.D., Oriol, X., Rosati, R., Savo, D.F.: Instance-level update in DL-lite ontologies through first-order rewriting. J. Artif. Intell. Res. 70, 1335–1371 (2021)

    Article  Google Scholar 

  20. Kowalski, R.A., Sergot, M.J.: A logic-based calculus of events. New Gener. Comput. 4(1), 67–95 (1986)

    Article  Google Scholar 

  21. Lee, J., Palla, R.: Reformulating the situation calculus and the event calculus in the general theory of stable models and in answer set programming. J. Artif. Intell. Res. 43, 571–620 (2012)

    Article  MathSciNet  Google Scholar 

  22. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Logic 7(3), 499–562 (2006)

    Article  MathSciNet  Google Scholar 

  23. Lin, F.: Situation calculus. In: van Harmelen, F., Lifschitz, V., Porter, B.W. (eds.) Handbook of Knowledge Representation, Foundations of Artificial Intelligence, vol. 3, pp. 649–669. Elsevier (2008)

    Google Scholar 

  24. Lloyd, J.: Foundations of Logic Programming. Symbolic Computation. Second extended edn. Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-642-83189-8

  25. Lutz, C.: Description logics with concrete domains - a survey. In: Balbiani, P., Suzuki, N., Wolter, F., Zakharyaschev, M. (eds.) Advances in Modal Logic 4, Papers from the Fourth Conference on “Advances in Modal Logic”, pp. 265–296. King’s College Publications (2002)

    Google Scholar 

  26. Miller, R., Shanahan, M.: Some alternative formulations of the event calculus. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2408, pp. 452–490. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45632-5_17

    Chapter  Google Scholar 

  27. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 549–563. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30475-3_38

    Chapter  Google Scholar 

  28. Mueller, E.T.: Event calculus reasoning through satisfiability. J. Logic Comput. 14(5), 703–730 (2004)

    Article  MathSciNet  Google Scholar 

  29. Özçep, Ö.L., Möller, R., Neuenstadt, C.: A stream-temporal query language for ontology based data access. In: Lutz, C., Thielscher, M. (eds.) KI 2014. LNCS (LNAI), vol. 8736, pp. 183–194. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11206-0_18

    Chapter  Google Scholar 

  30. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900, pp. 133–173. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77688-8_5

    Chapter  MATH  Google Scholar 

  31. Przymusinski, T.C.: On the declarative and procedural semantics of logic programs. J. Autom. Reasoning 5(2), 167–205 (1989)

    Article  MathSciNet  Google Scholar 

  32. Rosati, R.: DL+log: tight integration of description logics and disjunctive datalog. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings, Tenth International Conference on Principles of Knowledge Representation and Reasoning, Lake District of the United Kingdom, 2–5 June 2006, pp. 68–78. AAAI Press (2006)

    Google Scholar 

  33. Sakama, C.: Possible model semantics for disjunctive databases. In: Kim, W., Nicholas, J.M., Nishio, S. (eds.) Proceedings First International Conference on Deductive and Object-Oriented Databases (DOOD-89), pp. 337–351. Elsevier (1990)

    Google Scholar 

  34. Sakama, C., Inoue, K.: An alternative approach to the semantics of disjunctive logic programs and deductive databases. J. Autom. Reasoning 13, 145–172 (1994)

    Article  MathSciNet  Google Scholar 

  35. Shanahan, M.: The event calculus explained. In: Wooldridge, M.J., Veloso, M. (eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48317-9_17

    Chapter  Google Scholar 

  36. Tsilionis, E., Artikis, A., Paliouras, G.: Incremental event calculus for run-time reasoning. In: Proceedings of the 13th ACM International Conference on Distributed and Event-Based Systems, DEBS 2019, pp. 79–90. Association for Computing Machinery, New York (2019)

    Google Scholar 

  37. Zaniolo, C.: Expressing and supporting efficiently greedy algorithms as locally stratified logic programs. In: Technical Communications of ICLP 2015 1433 (01 2015)

    Google Scholar 

Download references

Acknowledgement

I am grateful to the reviewers for their constructive feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Baumgartner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baumgartner, P. (2021). Combining Event Calculus and Description Logic Reasoning via Logic Programming. In: Konev, B., Reger, G. (eds) Frontiers of Combining Systems. FroCoS 2021. Lecture Notes in Computer Science(), vol 12941. Springer, Cham. https://doi.org/10.1007/978-3-030-86205-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86205-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86204-6

  • Online ISBN: 978-3-030-86205-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics