Abstract
The paper introduces a knowledge representation language that combines the event calculus with description logic in a logic programming framework. The purpose is to provide the user with an expressive language for modelling and analysing systems that evolve over time. The approach is exemplified with the logic programming language as implemented in the Fusemate system. The paper extends Fusemate’s rule language with a weakly DL-safe interface to the description logic \(\mathcal ALCIF\) and adapts the event calculus to this extended language. This way, time-stamped ABoxes can be manipulated as fluents in the event calculus. All that is done in the frame of Fusemate’s concept of stratification by time. The paper provides conditions for soundness and completeness where appropriate. Using an elaborated example it demonstrates the interplay of the event calculus, description logic and logic programming rules for computing possible models as plausible explanations of the current state of the modelled system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
\(\mathcal ALCIF\) is the well-known description logic \(\mathcal ALC\) extended with inverse roles and functional roles. See [5] for background on description logics.
- 2.
This definition of head is actually simplified as Fusemate offers an additional head operator for belief revision, see [11]. This is ignored here.
- 3.
The variables \( var (t)\) in the special form have to be excluded from that because they are quantified within their “” body scope. To avoid name conflicts, we assume that \( var (t) \cap fvar (B') = \emptyset \) for all bodies \(B'\) such that \(B = B'\) or B occurs in \(B'\).
- 4.
Body matcher are represented internally in the Scala runtime system without explicit grounding.
- 5.
The concrete Fusemate syntax is but we stick with the better readable “:”-syntax. TBoxes have similar syntax and are typically bound to (Scala) variables like in the example. In concrete syntax, free constant, function and predicate symbols start with a capital letter, variables with a lower case letter. An underscore is an anonymous variable.
- 6.
Access to I is unusual for logic programming systems. See [12] for a discussion of this features.
- 7.
Actually, events can be inserted in retrospect using Fusemate’s revision operator, restarting the model computation from there. The paper [11] already has a “supply-chain” example for that.
References
Artikis, A., Skarlatidis, A., Portet, F., Paliouras, G.: Logic-based event recognition. Knowl. Eng. Rev. 27(4), 469–506 (2012)
Baader, F., et al.: A novel architecture for situation awareness systems. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp. 77–92. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02716-1_7
Baader, F., Borgwardt, S., Lippmann, M.: Temporal conjunctive queries in expressive description logics with transitive roles. In: Pfahringer, B., Renz, J. (eds.) AI 2015. LNCS (LNAI), vol. 9457, pp. 21–33. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26350-2_3
Baader, F., Ghilardi, S., Lutz, C.: LTL over description logic axioms. ACM Trans. Comput. Logic - TOCL 13, 1–32 (2008)
Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge University Press, Cambridge (2017)
Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Computing optimal repairs of quantified ABoxes w.r.t. static \(\cal{EL}\) TBoxes. In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 309–326. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5_18
Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Computing compliant anonymisations of quantified ABoxes w.r.t. \(\cal{EL} \) policies. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12506, pp. 3–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62419-4_1
Baader, F., Lippmann, M., Liu, H.: Using causal relationships to deal with the ramification problem in action formalisms based on description logics. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010. LNCS, vol. 6397, pp. 82–96. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16242-8_7
Baader, F., Lutz, C., Miličic, M., Sattler, U., Wolter, F.: Integrating description logics and action formalisms: first results. In: Proceedings of the 20th National Conference on Artificial Intelligence, AAAI 2005, vol. 2, pp. 572–577. AAAI Press (2005)
Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Masellis, R., Felli, P., Montali, M.: Description logic knowledge and action bases. J. Artif. Intell. Res. 46, 651–686 (2013)
Baumgartner, P.: Possible models computation and revision – a practical approach. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12166, pp. 337–355. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51074-9_19
Baumgartner, P.: The Fusemate logic programming system. In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 589–601. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5_34
Baumgartner, P., Furbach, U., Niemelä, I.: Hyper tableaux. In: Alferes, J.J., Pereira, L.M., Orlowska, E. (eds.) JELIA 1996. LNCS, vol. 1126, pp. 1–17. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61630-6_1
Beck, H., Dao-Tran, M., Eiter, T.: LARS: a logic-based framework for analytic reasoning over streams. Artif. Intell. 261, 16–70 (2018)
Drescher, C., Thielscher, M.: Integrating action calculi and description logics. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 68–83. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74565-5_8
Eiter, T., Ianni, G., Krennwallner, T., Polleres, A.: Rules and ontologies for the semantic web. In: Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori, M., Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 1–53. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85658-0_1
Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the Semantic Web. Artif. Intell. 172(12), 1495–1539 (2008)
Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9, 365–385 (1991)
Giacomo, G.D., Oriol, X., Rosati, R., Savo, D.F.: Instance-level update in DL-lite ontologies through first-order rewriting. J. Artif. Intell. Res. 70, 1335–1371 (2021)
Kowalski, R.A., Sergot, M.J.: A logic-based calculus of events. New Gener. Comput. 4(1), 67–95 (1986)
Lee, J., Palla, R.: Reformulating the situation calculus and the event calculus in the general theory of stable models and in answer set programming. J. Artif. Intell. Res. 43, 571–620 (2012)
Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Logic 7(3), 499–562 (2006)
Lin, F.: Situation calculus. In: van Harmelen, F., Lifschitz, V., Porter, B.W. (eds.) Handbook of Knowledge Representation, Foundations of Artificial Intelligence, vol. 3, pp. 649–669. Elsevier (2008)
Lloyd, J.: Foundations of Logic Programming. Symbolic Computation. Second extended edn. Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-642-83189-8
Lutz, C.: Description logics with concrete domains - a survey. In: Balbiani, P., Suzuki, N., Wolter, F., Zakharyaschev, M. (eds.) Advances in Modal Logic 4, Papers from the Fourth Conference on “Advances in Modal Logic”, pp. 265–296. King’s College Publications (2002)
Miller, R., Shanahan, M.: Some alternative formulations of the event calculus. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2408, pp. 452–490. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45632-5_17
Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 549–563. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30475-3_38
Mueller, E.T.: Event calculus reasoning through satisfiability. J. Logic Comput. 14(5), 703–730 (2004)
Özçep, Ö.L., Möller, R., Neuenstadt, C.: A stream-temporal query language for ontology based data access. In: Lutz, C., Thielscher, M. (eds.) KI 2014. LNCS (LNAI), vol. 8736, pp. 183–194. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11206-0_18
Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900, pp. 133–173. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77688-8_5
Przymusinski, T.C.: On the declarative and procedural semantics of logic programs. J. Autom. Reasoning 5(2), 167–205 (1989)
Rosati, R.: DL+log: tight integration of description logics and disjunctive datalog. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings, Tenth International Conference on Principles of Knowledge Representation and Reasoning, Lake District of the United Kingdom, 2–5 June 2006, pp. 68–78. AAAI Press (2006)
Sakama, C.: Possible model semantics for disjunctive databases. In: Kim, W., Nicholas, J.M., Nishio, S. (eds.) Proceedings First International Conference on Deductive and Object-Oriented Databases (DOOD-89), pp. 337–351. Elsevier (1990)
Sakama, C., Inoue, K.: An alternative approach to the semantics of disjunctive logic programs and deductive databases. J. Autom. Reasoning 13, 145–172 (1994)
Shanahan, M.: The event calculus explained. In: Wooldridge, M.J., Veloso, M. (eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48317-9_17
Tsilionis, E., Artikis, A., Paliouras, G.: Incremental event calculus for run-time reasoning. In: Proceedings of the 13th ACM International Conference on Distributed and Event-Based Systems, DEBS 2019, pp. 79–90. Association for Computing Machinery, New York (2019)
Zaniolo, C.: Expressing and supporting efficiently greedy algorithms as locally stratified logic programs. In: Technical Communications of ICLP 2015 1433 (01 2015)
Acknowledgement
I am grateful to the reviewers for their constructive feedback.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Baumgartner, P. (2021). Combining Event Calculus and Description Logic Reasoning via Logic Programming. In: Konev, B., Reger, G. (eds) Frontiers of Combining Systems. FroCoS 2021. Lecture Notes in Computer Science(), vol 12941. Springer, Cham. https://doi.org/10.1007/978-3-030-86205-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-86205-3_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86204-6
Online ISBN: 978-3-030-86205-3
eBook Packages: Computer ScienceComputer Science (R0)