Nothing Special   »   [go: up one dir, main page]

Skip to main content

Hyper tableaux

  • Automated Reasoning
  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 1996)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1126))

Included in the following conference series:

Abstract

This paper introduces a variant of clausal normal form tableaux that we call “hyper tableaux”. Hyper tableaux keep many desirable features of analytic tableaux while taking advantage of the central idea from (positive) hyper resolution, namely to resolve away all negative literals of a clause in a single inference step. Another feature of the proposed calculus is the extensive use of universally quantified variables. This enables new efficient forward-chaining proof procedures for full first order theories as variants of tableaux calculi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Peter Baumgartner and Ulrich Furbach. Hyper Tableaux and Disjunctive Logic Programming. Fachberichte Informatik 13-96, Universität Koblenz-Landau, Universität Koblenz-Landau, Institut für Informatik, Rheinau 1, D-56075 Koblenz, 1996.

    Google Scholar 

  2. B. Beckert and R. Hähnle. An Improved Method for Adding Equality to Free Variable semantic Tableaux. In D. Kapur, editor, 11th International Conference on Automated Deduction, volume 607 of LNCS, pages 507–521. Springer, 1992.

    Google Scholar 

  3. Bernhard Beckert and Joachim Posegga. leanTAP: Lean tableaubased deduction. Journal of Automated Reasoning, 1994. To appear.

    Google Scholar 

  4. Jean-Paul Billon. The Disconnection Method. In P. Moscato, U. Moscato, D. Mundici, and M. Ornaghi, editors, Theorem Proving with Analytic Tableaux and Related Methods, volume 1071 of Lecture Notes in Artificial Intelligence. Springer, 1996.

    Google Scholar 

  5. F. Bry and A. Yaha. Minimal model generation with unit hyper-resolution tableau. In 5th Workshop of Analytic Tableaux and Related methods, LNCS. Springer, 1996.

    Google Scholar 

  6. C. Chang and R. Lee. Symbolic Logic and Mechanical Theorem Proving. Academic Press, 1973.

    Google Scholar 

  7. M. Fitting. First Order Logic and Automated Theorem Proving. Texts and Monographs in Computer Science. Springer, 1990.

    Google Scholar 

  8. H. Fujita and R. Hasegawa. A Model Generation Theorem Prover in KL1 using a Ramified-Stack Algorithm. In Proc. of the Eigth International Conference on Logic Programming, pages 535–548, Paris, France, 1991.

    Google Scholar 

  9. R. Hähnle, B. Beckert, and S. Gerberding. The Many-Valued Theorem Prover 3TAP. Interner Bericht 30/94, Universität Karlsruhe, 1994.

    Google Scholar 

  10. R. Hähnle. Positive tableaux. Research note, 1995.

    Google Scholar 

  11. R. Letz, K. Mayr, and C. Goller. Controlled Integrations of the Cut Rule into Connection Tableau Calculi. Journal of Automated Reasoning, 13, 1994.

    Google Scholar 

  12. D. Loveland, D. Reed, and D. Wilson. SATCHMORE: SATCHMO with RElevance. Journal of Autmated Reasoning, 14:325–351, 1995.

    Article  Google Scholar 

  13. R. Manthey and F. Bry. SATCHMO: a theorem prover implemented in Prolog. In Proc. 9th CADE. Argonnee, Illinois, Springer LNCS, 1988.

    Google Scholar 

  14. I. Niemelä. Implementing circumscription using a tableau method. In Proceedings of the European Conference on Artificial Intelligence, Budapest, Hungary, August 1996. John Wiley. To appear.

    Google Scholar 

  15. I. Niemelä. A tableau calculus for minimal model reasoning. In Proceedings of the Fifth Workshop on Theorem Proving with Analytic Tableaux and Related Methods, pages 278–294, Terrasini, Italy, May 1996. Springer-Verlag.

    Google Scholar 

  16. F. Oppacher and E. Suen. HARP: A Tableau-Based Theorem Prover. Journal of Automated Reasoning, 4:69–100, 1988.

    Article  Google Scholar 

  17. Arcot Rajasekar. Semantics for Disjunctive Logic Programs. PhD thesis, University of Maryland, 1989.

    Google Scholar 

  18. J. A. Robinson. Automated deduction with hyper-resolution. Internat. J. Comput. Math., 1:227–234, 1965.

    Google Scholar 

  19. Jörg H. Siekmann. Unification Theory. Journal of Symbolic Computation, 7(1):207–274, January 1989.

    Google Scholar 

  20. G. Sutcliffe, C. Suttner, and T. Yemenis. The TPTP problem library. In A. Bundy, editor, Proc. CADE-12, volume 814 of LNAI. Springer, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Jülio Alferes Luís Moniz Pereira Ewa Orlowska

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baumgartner, P., Furbach, U., Niemelä, I. (1996). Hyper tableaux. In: Alferes, J.J., Pereira, L.M., Orlowska, E. (eds) Logics in Artificial Intelligence. JELIA 1996. Lecture Notes in Computer Science, vol 1126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61630-6_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-61630-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61630-6

  • Online ISBN: 978-3-540-70643-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics