Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Weak and strong convergence theorems for variational inequality problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we study the weak and strong convergence of two algorithms for solving Lipschitz continuous and monotone variational inequalities. The algorithms are inspired by Tseng’s extragradient method and the viscosity method with Armijo-like step size rule. The main advantages of our algorithms are that the construction of solution approximations and the proof of convergence of the algorithms are performed without the prior knowledge of the Lipschitz constant of cost operators. Finally, we provide numerical experiments to show the efficiency and advantage of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148(2), 318–335 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Meth. Softw. 26(4-5), 827–845 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61, 1119–1132 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, Berlin (2003)

    MATH  Google Scholar 

  5. Gibali, A.: A new non-Lipschitzian projection method for solving variational inequalities in Euclidean spaces. J. Nonlinear Anal. Optim. 6, 41–51 (2015)

    MathSciNet  Google Scholar 

  6. Gibali, A., Reich, S., Zalas, R.: Iterative methods for solving variational inequalities in Euclidean space. J. Fixed Point Theory Appl. 17, 775–811 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gibali, A., Reich, S., Zalas, R.: Outer approximation methods for solving variational inequalities in Hilbert space. Optimization 66, 417–437 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York and Basel (1984)

    MATH  Google Scholar 

  9. Goldstein, A.A.: Convex programming in hilbert space. Bullet. Amer. Math. Soc. 70, 709–710 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hartman, P., Stampacchia, G.: On some non-linear elliptic diferential-functional equations. Acta Math. 115, 271–310 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  11. He, B.S., Liao, L.Z.: Improvement of some projection methods for monotone nonlinear variational inequalities. J. Optim. Theory Appl. 112, 111–128 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hieu, D.V., Anh, P.K., Muu, L.D.: Modified hybrid projection methods for finding common solutions to variational inequality problems. Comput. Optim. Appl. 66, 75–96 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hieu, D.V., Muu, L., Anh, P.K.: Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings. Numer. Algorithm. 73, 197–217 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hieu, D.V.: Parallel extragradient-proximal methods for split equilibrium problems. Math. Model. Anal. 21, 478–501 (2016)

    Article  MathSciNet  Google Scholar 

  15. Hieu, D.V.: An explicit parallel algorithm for variational inequalities. Bulletin Malaysian Mathematics Science and Society https://doi.org/10.1007/s40840-017-0474-z (2017)

  16. Kassay, G., Reich, S., Sabach, S.: Iterative methods for solving systems of variational inequalities in reflexive Banach spaces. SIAM J. Optim. 21, 1319–1344 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  18. Konnov, I.V.: Combined relaxation methods for variational inequalities. Springer, Berlin (2000)

    MATH  Google Scholar 

  19. Konnov, I.V.: Equilibrium models and variational inequalities. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  20. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekonomikai Matematicheskie Metody 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  21. Levitin, E.S., Polyak, B.T.: Constrained minimization problems. USSR Comput. Math. Math. Phys. 6, 1–50 (1966)

    Article  Google Scholar 

  22. Liu, L.S.: Ishikawa and Mann iteration process with errors for nonlinear strongly accretive mappings in Banach spaces. J. Math. Anal. Appl. 194, 114–125 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Maingé, F.: A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control Optim. 47, 1499–1515 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Malitsky, Y.V.: Projected reflected gradient methods for monotone variational inequalities. SIAM J. Optim. 25, 502–520 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Moudafi, A.: Viscosity approximation methods for fixed-point problems. J. Math. Anal. Appl. 241, 46–55 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Reich, S.: Constructive Techniques for Accretive and Monotone Operators, pp. 335–345. Applied Nonlinear Analysis, Academic Press, New York (1979)

    MATH  Google Scholar 

  27. Pang, J.S., Gabriel, S.A.: NE/SQP: A robust algorithm for the nonlinear complementarity problem. Math. Program. 60, 295–337 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Popov, L.D.: A modification of the Arrow-Hurwicz method for searching for saddle points. Mat. Zametki 28(5), 777–784 (1980)

    MathSciNet  MATH  Google Scholar 

  29. Shehu, Y., Iyiola, O.S.: Strong convergence result for monotone variational inequalities. Numerical Algorithms https://doi.org/10.1007/s11075-016-0253-1 (2017)

  30. Takahashi, W.: Nonlinear Functional Analysis-Fixed Point Theory and Its Applications. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  31. Thong, D.V.: Viscosity approximation methods for solving fixed point problems and split common fixed point problems. J. Fixed Point Theory Appl. 19, 1481–1499 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous referees for valuable suggestions which helped to improve the manuscript.

Funding

The first author is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 101.02-2017.15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duong Viet Thong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thong, D.V., Hieu, D.V. Weak and strong convergence theorems for variational inequality problems. Numer Algor 78, 1045–1060 (2018). https://doi.org/10.1007/s11075-017-0412-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0412-z

Keywords

Mathematics Subject Classification (2010)

Navigation