Abstract
In this paper, we propose a new viscosity extragradient algorithm for solving variational inequality problems of pseudo-monotone and non-Lipschitz continuous operator in real Hilbert spaces. We prove a strong convergence theorem under some appropriate conditions imposed on the parameters. Finally, we give some numerical experiments to illustrate the advantages of our proposed algorithms. The main results obtained in this paper extend and improve some related works in the literature.
Similar content being viewed by others
References
Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)
Karamardian, S.: Complementarity problems over cones with monotone and pseudo-monotone maps. J. Optim. Theory Appl. 18, 445–454 (1976)
Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)
Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities Applications to Free Boundary Problems. Wiley, New York (1984)
Solodov, M.V., Tseng, P.: Modified projection-type methods for monotone variational inequalities. SIAM J. Control Optim. 34, 1814–1830 (1996)
Konnov, I.V.: Combined Relaxation Methods for Variational Inequalities. Springer, Berlin (2001)
Hu, X., Wang, J.: Solving pseudo-monotone variational inequalities and pseudo-convex optimization problems using the projection neural network. IEEE Trans. Neural Netw. 17, 1487–1499 (2006)
Malitsky, Y.V.: Projected reflected gradient methods for monotone variational inequalities. SIAM J. Optim. 25, 502–520 (2015)
Malitsky, Y.V., Semenov, V.V.: A hybrid method without extrapolation step for solving variational inequality problems. J. Glob. Optim. 61, 193–202 (2015)
Kassay, G., Reich, S., Sabach, S.: Iterative methods for solving systems of variational inequalities in refelexive Banach spaces. SIAM J. Optim. 21, 1319–1344 (2011)
Bot, R.I., Csetnek, E.R.: Regularity conditions via generalized interiority notions in convex optimization: new achievements and their relation to some classical statements. Optimization 61(1), 35–65 (2012)
Bot, R.I., Csetnek, E.R., Heinrich, A.: A primal-dual splitting algorithm for finding zeros of sums of maximally monotone operators. SIAM J. Optim. 23(4), 2011–2036 (2013)
Bot, R.I., Hendrich, C.: A Douglas–Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators. SIAM J. Optim. 23(4), 2541–2565 (2013)
Bot, R.I., Csetnek, E.R., Heinrich, A., Hendrich, C.: On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems. Math. Program. 150, 251–279 (2015)
Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas–Rachford splitting for monotone inclusion. Appl. Math. Comput. 256, 472–487 (2015)
Shehu, Y.: Iterative methods for split feasibility problems in certain Banach spaces. J. Nonlinear Convex Anal. 16, 2315–2364 (2015)
Bot, R.I., Csetnek, E.R.: An inertial Tseng’s type proximal algorithm for nonsmooth and nonconvex optimization problems. J. Optim. Theory Appl. 171, 600–616 (2016)
Shehu, Y., Iyiola, O.S., Enyi, C.D.: An iterative algorithm for solving split feasibility problems and fixed point problems in Banach spaces. Numer. Algorithms 72, 835–864 (2016)
Shehu, Y., Iyiola, O.S.: Convergence analysis for the proximal split feasibility problem using an inertial extrapolation term method. J. Fixed Point Theory Appl. 19, 2483–2510 (2017)
Dong, Q.L., Cho, Y.J., Zhong, L.L., Rassias, ThM: Inertial projection and contraction algorithms for variational inequalities. J. Glob. Optim. 70, 687–704 (2018)
Dong, Q.L., Yuan, H.B., Cho, Y.J., Rassias, ThM: Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings. Optim. Lett. 12, 87–102 (2018)
Thong, D.V., Vinh, N.T., Cho, Y.J.: Accelerated subgradient extragradient methods for variational inequality problems. J. Sci. Comput. 80, 1438–1462 (2019)
Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61, 1119–1132 (2012)
Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)
Gibali, A., Reich, S., Zalas, R.: Iterative methods for solving variational inequalities in Euclidean space. J. Fixed Point Theory Appl. 17, 775–811 (2015)
Gibali, A., Reich, S., Zalas, R.: Outer approximation methods for solving variational inequalities in Hilbert space. Optimization 66, 417–437 (2017)
Cegielski, A., Gibali, A., Reich, S., Zalas, R.: Outer approximation methods for solving variational inequalities defined over the solution set of a split convex feasibility problem. Numer. Funct. Anal. Optim. 41, 1089–1108 (2020)
Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon. Mate. Metody 12, 747–756 (1976)
Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)
Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. 26, 827–845 (2011)
Iusem, A.N., Nasri, M.: Korpelevich’s method for variational inequality problems in Banach spaces. J. Glob. Optim. 50, 59–76 (2011)
Mainge, P.E.: A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control Optim. 47, 1499–1515 (2008)
Thong, D.V., Hieu, D.V.: Weak and strong convergence theorems for variational inequality problems. Numer. Algorithms 78, 1045–1060 (2018)
Thong, D.V., Hieu, D.V.: Inertial extragradient algorithms for strongly pseudomonotone variational inequalities. J. Comput. Appl. Math. 341, 80–98 (2018)
Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)
Iusem, A.N.: An iterative algorithm for the variational inequality problem. Comput. Appl. Math. 13, 103–114 (1994)
Thong, D.V., Shehu, Y., Iyiola, O.S.: Weak and strong convergence theorems for solving pseudo-monotone variational inequalities with non-Lipschitz mappings. Numer. Algorithms 84, 795–823 (2020)
Thong, D.V., Gibali, A.: Extragradient methods for solving non-Lipschitzian pseudo-monotone variational inequalities. J. Fixed Point Theory Appl. 21, 20 (2019)
Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)
Kopecká, E., Reich, S.: A note on alternating projections in Hilbert space. J. Fixed Point Theory Appl. 12, 41–47 (2012)
Cottle, R.W., Yao, J.C.: Pseudo-monotone complementarity problems in Hilbert space. J. Optim. Theory Appl. 75, 281–295 (1992)
Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, vol. I. Springer, New York (2003)
Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)
Denisov, S.V., Semenov, V.V., Chabak, L.M.: Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators. Cybern. Syst. Anal. 51, 757–765 (2015)
Iusem, A.N., Garciga Otero, R.: Inexact versions of proximal point and augmented Lagrangian algorithms in Banach spaces. Numer. Funct. Anal. Optim. 22, 609–640 (2001)
Harker, P.T., Pang, J.-S.: A Damped-Newton Method for the Linear Complementarity Problem. In: Allgower, G., Georg, K. (eds.) Computational Solution of Nonlinear Systems of Equations. Lectures in Applied Mathematics, vol. 26, pp. 265–284. AMS, Providence (1990)
Hieu, D.V., Anh, P.K., Muu, L.D.: Modified hybrid projection methods for finding common solutions to variational inequality problems. Comput. Optim. Appl. 66, 75–96 (2017)
Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)
Gibali, A., Thong, D.V., Tuan, P.A.: Two simple projection-type methods for solving variational inequalities. Anal. Math. Phys. 9, 2203–2225 (2019)
Thong, D.V., Hieu, D.V.: Strong convergence of extragradient methods with a new step size for solving variational inequality problems. Comput. Appl. Math. 38, 136 (2019)
Shehu, Y., Dong, Q.L., Jiang, D.: Single projection method for pseudo-monotone variational inequalbity in Hilbert spaces. Optimization 68, 385–409 (2019)
Thong, D.V., Hieu, D.V., Rassias, T.M.: Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems. Optimiz. Lett. 14, 115–144 (2020)
Yang, J., Hongwei, L.: Strong convergence result for solving monotone variational inequalities in Hilbert space. Numer. Algorithms 80, 741–752 (2019)
Thong, D.V., Vuong, P.T.: Modified Tseng’s extragradient methods for solving pseudo-monotone variational inequalities. Optimization 68(11), 2207–2226 (2019)
Acknowledgements
The authors sincerely thank the Editor and the anonymous reviewers for their careful reading and suggestions that improved the manuscript. This work was supported by the NSF of China (Grant No. 11771063), the Natural Science Foundation of Chongqing (cstc2020jcyj-msxmX0455), Science and Technology Project of Chongqing Education Committee (Grant No. KJZD-K201900504), the University Young Core Teacher Foundation of Chongqing (020603011714).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Jen-Chih Yao.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Cai, G., Dong, QL. & Peng, Y. Strong Convergence Theorems for Solving Variational Inequality Problems with Pseudo-monotone and Non-Lipschitz Operators. J Optim Theory Appl 188, 447–472 (2021). https://doi.org/10.1007/s10957-020-01792-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-020-01792-w