Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Strong Convergence Theorems for Solving Variational Inequality Problems with Pseudo-monotone and Non-Lipschitz Operators

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a new viscosity extragradient algorithm for solving variational inequality problems of pseudo-monotone and non-Lipschitz continuous operator in real Hilbert spaces. We prove a strong convergence theorem under some appropriate conditions imposed on the parameters. Finally, we give some numerical experiments to illustrate the advantages of our proposed algorithms. The main results obtained in this paper extend and improve some related works in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  2. Karamardian, S.: Complementarity problems over cones with monotone and pseudo-monotone maps. J. Optim. Theory Appl. 18, 445–454 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  4. Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities Applications to Free Boundary Problems. Wiley, New York (1984)

    MATH  Google Scholar 

  5. Solodov, M.V., Tseng, P.: Modified projection-type methods for monotone variational inequalities. SIAM J. Control Optim. 34, 1814–1830 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Konnov, I.V.: Combined Relaxation Methods for Variational Inequalities. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  7. Hu, X., Wang, J.: Solving pseudo-monotone variational inequalities and pseudo-convex optimization problems using the projection neural network. IEEE Trans. Neural Netw. 17, 1487–1499 (2006)

    Article  Google Scholar 

  8. Malitsky, Y.V.: Projected reflected gradient methods for monotone variational inequalities. SIAM J. Optim. 25, 502–520 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Malitsky, Y.V., Semenov, V.V.: A hybrid method without extrapolation step for solving variational inequality problems. J. Glob. Optim. 61, 193–202 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kassay, G., Reich, S., Sabach, S.: Iterative methods for solving systems of variational inequalities in refelexive Banach spaces. SIAM J. Optim. 21, 1319–1344 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bot, R.I., Csetnek, E.R.: Regularity conditions via generalized interiority notions in convex optimization: new achievements and their relation to some classical statements. Optimization 61(1), 35–65 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bot, R.I., Csetnek, E.R., Heinrich, A.: A primal-dual splitting algorithm for finding zeros of sums of maximally monotone operators. SIAM J. Optim. 23(4), 2011–2036 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bot, R.I., Hendrich, C.: A Douglas–Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators. SIAM J. Optim. 23(4), 2541–2565 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bot, R.I., Csetnek, E.R., Heinrich, A., Hendrich, C.: On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems. Math. Program. 150, 251–279 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas–Rachford splitting for monotone inclusion. Appl. Math. Comput. 256, 472–487 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Shehu, Y.: Iterative methods for split feasibility problems in certain Banach spaces. J. Nonlinear Convex Anal. 16, 2315–2364 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Bot, R.I., Csetnek, E.R.: An inertial Tseng’s type proximal algorithm for nonsmooth and nonconvex optimization problems. J. Optim. Theory Appl. 171, 600–616 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shehu, Y., Iyiola, O.S., Enyi, C.D.: An iterative algorithm for solving split feasibility problems and fixed point problems in Banach spaces. Numer. Algorithms 72, 835–864 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shehu, Y., Iyiola, O.S.: Convergence analysis for the proximal split feasibility problem using an inertial extrapolation term method. J. Fixed Point Theory Appl. 19, 2483–2510 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dong, Q.L., Cho, Y.J., Zhong, L.L., Rassias, ThM: Inertial projection and contraction algorithms for variational inequalities. J. Glob. Optim. 70, 687–704 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dong, Q.L., Yuan, H.B., Cho, Y.J., Rassias, ThM: Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings. Optim. Lett. 12, 87–102 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Thong, D.V., Vinh, N.T., Cho, Y.J.: Accelerated subgradient extragradient methods for variational inequality problems. J. Sci. Comput. 80, 1438–1462 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61, 1119–1132 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gibali, A., Reich, S., Zalas, R.: Iterative methods for solving variational inequalities in Euclidean space. J. Fixed Point Theory Appl. 17, 775–811 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gibali, A., Reich, S., Zalas, R.: Outer approximation methods for solving variational inequalities in Hilbert space. Optimization 66, 417–437 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cegielski, A., Gibali, A., Reich, S., Zalas, R.: Outer approximation methods for solving variational inequalities defined over the solution set of a split convex feasibility problem. Numer. Funct. Anal. Optim. 41, 1089–1108 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon. Mate. Metody 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  29. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. 26, 827–845 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Iusem, A.N., Nasri, M.: Korpelevich’s method for variational inequality problems in Banach spaces. J. Glob. Optim. 50, 59–76 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mainge, P.E.: A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control Optim. 47, 1499–1515 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Thong, D.V., Hieu, D.V.: Weak and strong convergence theorems for variational inequality problems. Numer. Algorithms 78, 1045–1060 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Thong, D.V., Hieu, D.V.: Inertial extragradient algorithms for strongly pseudomonotone variational inequalities. J. Comput. Appl. Math. 341, 80–98 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Iusem, A.N.: An iterative algorithm for the variational inequality problem. Comput. Appl. Math. 13, 103–114 (1994)

    MathSciNet  MATH  Google Scholar 

  37. Thong, D.V., Shehu, Y., Iyiola, O.S.: Weak and strong convergence theorems for solving pseudo-monotone variational inequalities with non-Lipschitz mappings. Numer. Algorithms 84, 795–823 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Thong, D.V., Gibali, A.: Extragradient methods for solving non-Lipschitzian pseudo-monotone variational inequalities. J. Fixed Point Theory Appl. 21, 20 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  40. Kopecká, E., Reich, S.: A note on alternating projections in Hilbert space. J. Fixed Point Theory Appl. 12, 41–47 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Cottle, R.W., Yao, J.C.: Pseudo-monotone complementarity problems in Hilbert space. J. Optim. Theory Appl. 75, 281–295 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  42. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, vol. I. Springer, New York (2003)

    MATH  Google Scholar 

  43. Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Denisov, S.V., Semenov, V.V., Chabak, L.M.: Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators. Cybern. Syst. Anal. 51, 757–765 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Iusem, A.N., Garciga Otero, R.: Inexact versions of proximal point and augmented Lagrangian algorithms in Banach spaces. Numer. Funct. Anal. Optim. 22, 609–640 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. Harker, P.T., Pang, J.-S.: A Damped-Newton Method for the Linear Complementarity Problem. In: Allgower, G., Georg, K. (eds.) Computational Solution of Nonlinear Systems of Equations. Lectures in Applied Mathematics, vol. 26, pp. 265–284. AMS, Providence (1990)

    Google Scholar 

  47. Hieu, D.V., Anh, P.K., Muu, L.D.: Modified hybrid projection methods for finding common solutions to variational inequality problems. Comput. Optim. Appl. 66, 75–96 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  49. Gibali, A., Thong, D.V., Tuan, P.A.: Two simple projection-type methods for solving variational inequalities. Anal. Math. Phys. 9, 2203–2225 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  50. Thong, D.V., Hieu, D.V.: Strong convergence of extragradient methods with a new step size for solving variational inequality problems. Comput. Appl. Math. 38, 136 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  51. Shehu, Y., Dong, Q.L., Jiang, D.: Single projection method for pseudo-monotone variational inequalbity in Hilbert spaces. Optimization 68, 385–409 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  52. Thong, D.V., Hieu, D.V., Rassias, T.M.: Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems. Optimiz. Lett. 14, 115–144 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  53. Yang, J., Hongwei, L.: Strong convergence result for solving monotone variational inequalities in Hilbert space. Numer. Algorithms 80, 741–752 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  54. Thong, D.V., Vuong, P.T.: Modified Tseng’s extragradient methods for solving pseudo-monotone variational inequalities. Optimization 68(11), 2207–2226 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the Editor and the anonymous reviewers for their careful reading and suggestions that improved the manuscript. This work was supported by the NSF of China (Grant No. 11771063), the Natural Science Foundation of Chongqing (cstc2020jcyj-msxmX0455), Science and Technology Project of Chongqing Education Committee (Grant No. KJZD-K201900504), the University Young Core Teacher Foundation of Chongqing (020603011714).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Cai.

Additional information

Communicated by Jen-Chih Yao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, G., Dong, QL. & Peng, Y. Strong Convergence Theorems for Solving Variational Inequality Problems with Pseudo-monotone and Non-Lipschitz Operators. J Optim Theory Appl 188, 447–472 (2021). https://doi.org/10.1007/s10957-020-01792-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01792-w

Keywords

Mathematics Subject Classification

Navigation