Abstract
In this work, we introduce self-adaptive methods for solving variational inequalities with Lipschitz continuous and quasimonotone mapping(or Lipschitz continuous mapping without monotonicity) in real Hilbert space. Under suitable assumptions, the convergence of algorithms are established without the knowledge of the Lipschitz constant of the mapping. The results obtained in this paper extend some recent results in the literature. Some preliminary numerical experiments and comparisons are reported.
Similar content being viewed by others
References
Cottle, R.W., Yao, J.C.: Pseudo-monotone complementarity problems in Hilbert space. J. Optim. Theory Appl. 75, 281–295 (1992)
Ye, M.L., He, Y.R.: A double projection method for solving variational inequalities without monotonicity. Comput. Optim. Appl. 60, 141–150 (2015)
Langenberg, N.: An interior proximal method for a class of quasimonotone variational inequalities. J. Optim. Theory Appl. 155, 902–922 (2012)
Brito, A.S., da Cruz Neto, J.X., Lopes, J.O., Oliveira, P.R.: Interior proximal algorithm for quasiconvex programming problems and variational inequalities with linear constraints. J. Optim. Theory Appl. 154, 217–234 (2012)
Korpelevich, G.M.: The extragradient method for finding saddle points and other problem. Ekonomika i Matematicheskie Metody 12, 747–756 (1976)
Noor, M.A.: Some developments in general variational inequalities. Appl. Math. Comput. 152, 199–277 (2004)
Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)
Tseng, P.: A modified forward-backward splitting method for maximal monotone mapping. SIAM J. Control Optim. 38, 431–446 (2000)
Solodov, M.V., Svaiter, B.F.: A new projection method for monotone variational inequalities. SIAM J. Control Optim. 37, 765–776 (1999)
Malitsky, YuV: Projected reflected gradient methods for variational inequalities. SIAM J. Optim. 25(1), 502–520 (2015)
Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity problem. Springer, New York (2003)
Iusem, A.N., Svaiter, B.F.: A variant of Korpelevich’s method for variational inequalities with a new search strategy. Optimization 42, 309–321 (1997)
Duong, V.T., Dang, V.H.: Weak and strong convergence throrems for variational inequality problems. Numer. Algorithm 78(4), 1045–1060 (2018)
Mainge, F.: A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control Optim. 47, 1499–1515 (2008)
Dong, Q.L., Cho, Y.J., Zhong, L., Rassias, T.M.: Inertial projection and contraction algorithms for variational inequalities. J. Global Optim. 70(3), 687–704 (2018)
Rapeepan, K., Satit, S.: Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 163, 399–412 (2014)
Yekini, S., Olaniyi, S.I.: Strong convergence result for monotone variational inequalities. Numer. Algorithm 76, 259–282 (2017)
Antipin, A.S.: On a method for convex programs using a symmetrical modification of the Lagrange function. Ekonomika i Matematicheskie Metody 12(6), 1164–1173 (1976)
Yang, J., Liu, H.W.: Strong convergence result for solving monotone variational inequalities in Hilbert space. Numer. Algorithm 80, 741–752 (2019)
Yang, J., Liu, H.W., Liu, Z.X.: Modified subgradient extragradient algorithms for solving monotone variational inequalities. Optimization 67(12), 2247–2258 (2018)
Yang, J., Liu, H.W.: A modified projected gradient method for monotone variational inequalities. J. Optim. Theory Appl. 179(1), 197–211 (2018)
Phan, T.V.: On the weak convergence of the extragradient method for solving pseudo-monotone variational inequalities. J. Optim. Theory Appl. 176, 399–409 (2018)
Khobotov, E.N.: Modification of the extra-gradient method for solving variational inequalities and certain optimization problems. USSR Comput. Math. Math. Phys. 27, 120–127 (1987)
Tinti, F.: Numerical solution for pseudomonotone variational inequality problems by extragradient methods. Var. Anal. Appl. 79, 1101–1128 (2004)
Hieu, D.V., Anh, P.K., Muu, L.D.: Modified extragradient-like algorithms with new stepsizes for variational inequalities. Comput. Optim. Appl. 73, 913–932 (2019)
Hieu, D.V., Cho, Y.J., Xiao, Y.-B.: Golden ratio algorithms with new stepsize rules for variational inequalities. Math. Methods Appl. Sci. (2019). https://doi.org/10.1002/mma.5703
Thong, D.V., Hieu, D.V.: Strong convergence of extragradient methods with a new step size for solving variational inequality problems. Comput. Appl. Math. 38, 136 (2019)
Marcotte, P., Zhu, D.L.: A cutting plane method for solving quasimonotone variational inequalities. Comput. Optim. Appl. 20, 317–324 (2001)
Sun, D.F.: A new step-size skill for solving a class of nonlinear equations. J. Comput. Math. 13, 357–368 (1995)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Liu, H., Yang, J. Weak convergence of iterative methods for solving quasimonotone variational inequalities. Comput Optim Appl 77, 491–508 (2020). https://doi.org/10.1007/s10589-020-00217-8
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-020-00217-8