Abstract
We perform a state-of-the-art global study of the cosmological thermal histories of a simple Yukawa model, and find higher perturbative orders to be important for determining both the presence and strength of strong first-order phase transitions. Using high-temperature effective field theory, we calculate the free energy density of the model up to \( \mathcal{O} \)(y5T4), where y is the Yukawa coupling and T is the temperature. The locations of phase transitions are found using the results of lattice Monte-Carlo simulations, and the strength of first-order transitions are evaluated within perturbation theory, to 3-loop order. This is the first global study of any model at this order. Compared to a vanilla 1-loop analysis, accurate to \( \mathcal{O} \)(y2T4), reaching such accuracy enables on average a five-fold reduction in the relative uncertainty in the predicted critical temperature Tc, and an additional ∼ 50% strong first-order transitions with latent heat \( L/{T}_c^4 \) > 0.1 to be identified in our scan.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
LISA collaboration, Laser Interferometer Space Antenna, arXiv:1702.00786 [INSPIRE].
W.-H. Ruan, Z.-K. Guo, R.-G. Cai and Y.-Z. Zhang, Taiji program: Gravitational-wave sources, Int. J. Mod. Phys. A 35 (2020) 2050075 [arXiv:1807.09495] [INSPIRE].
TianQin collaboration, TianQin: a space-borne gravitational wave detector, Class. Quant. Grav. 33 (2016) 035010 [arXiv:1512.02076] [INSPIRE].
S. Kawamura et al., The Japanese space gravitational wave antenna: DECIGO, Class. Quant. Grav. 28 (2011) 094011 [INSPIRE].
NANOGrav collaboration, The NANOGrav 15 yr Data Set: Search for Signals from New Physics, Astrophys. J. Lett. 951 (2023) L11 [arXiv:2306.16219] [INSPIRE].
G. Hobbs et al., The international pulsar timing array project: using pulsars as a gravitational wave detector, Class. Quant. Grav. 27 (2010) 084013 [arXiv:0911.5206] [INSPIRE].
M. D’Onofrio and K. Rummukainen, Standard model cross-over on the lattice, Phys. Rev. D 93 (2016) 025003 [arXiv:1508.07161] [INSPIRE].
Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz and K.K. Szabo, The Order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443 (2006) 675 [hep-lat/0611014] [INSPIRE].
Y.G. Kim, K.Y. Lee and S. Shin, Singlet fermionic dark matter, JHEP 05 (2008) 100 [arXiv:0803.2932] [INSPIRE].
S. Baek, P. Ko and W.-I. Park, Search for the Higgs portal to a singlet fermionic dark matter at the LHC, JHEP 02 (2012) 047 [arXiv:1112.1847] [INSPIRE].
S. Baek, P. Ko, W.-I. Park and E. Senaha, Vacuum structure and stability of a singlet fermion dark matter model with a singlet scalar messenger, JHEP 11 (2012) 116 [arXiv:1209.4163] [INSPIRE].
S. Esch, M. Klasen and C.E. Yaguna, Detection prospects of singlet fermionic dark matter, Phys. Rev. D 88 (2013) 075017 [arXiv:1308.0951] [INSPIRE].
O. Buchmueller, M.J. Dolan and C. McCabe, Beyond Effective Field Theory for Dark Matter Searches at the LHC, JHEP 01 (2014) 025 [arXiv:1308.6799] [INSPIRE].
M. Klasen and C.E. Yaguna, Warm and cold fermionic dark matter via freeze-in, JCAP 11 (2013) 039 [arXiv:1309.2777] [INSPIRE].
S. Esch, M. Klasen and C.E. Yaguna, A minimal model for two-component dark matter, JHEP 09 (2014) 108 [arXiv:1406.0617] [INSPIRE].
A. Freitas, S. Westhoff and J. Zupan, Integrating in the Higgs Portal to Fermion Dark Matter, JHEP 09 (2015) 015 [arXiv:1506.04149] [INSPIRE].
S. Baek, P. Ko, M. Park, W.-I. Park and C. Yu, Beyond the Dark matter effective field theory and a simplified model approach at colliders, Phys. Lett. B 756 (2016) 289 [arXiv:1506.06556] [INSPIRE].
G. Dupuis, Collider Constraints and Prospects of a Scalar Singlet Extension to Higgs Portal Dark Matter, JHEP 07 (2016) 008 [arXiv:1604.04552] [INSPIRE].
A. Albert et al., Towards the next generation of simplified Dark Matter models, Phys. Dark Univ. 16 (2017) 49 [arXiv:1607.06680] [INSPIRE].
N.F. Bell, G. Busoni and I.W. Sanderson, Self-consistent Dark Matter Simplified Models with an s-channel scalar mediator, JCAP 03 (2017) 015 [arXiv:1612.03475] [INSPIRE].
M. Fairbairn and R. Hogan, Singlet Fermionic Dark Matter and the Electroweak Phase Transition, JHEP 09 (2013) 022 [arXiv:1305.3452] [INSPIRE].
T. Li and Y.-F. Zhou, Strongly first order phase transition in the singlet fermionic dark matter model after LUX, JHEP 07 (2014) 006 [arXiv:1402.3087] [INSPIRE].
A. Beniwal, M. Lewicki, M. White and A.G. Williams, Gravitational waves and electroweak baryogenesis in a global study of the extended scalar singlet model, JHEP 02 (2019) 183 [arXiv:1810.02380] [INSPIRE].
N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen and V. Vaskonen, The Dawn of FIMP Dark Matter: A Review of Models and Constraints, Int. J. Mod. Phys. A 32 (2017) 1730023 [arXiv:1706.07442] [INSPIRE].
G. Elor, R. McGehee and A. Pierce, Maximizing Direct Detection with Highly Interactive Particle Relic Dark Matter, Phys. Rev. Lett. 130 (2023) 031803 [arXiv:2112.03920] [INSPIRE].
C.E. Yaguna and O. Zapata, A minimal model of fermion FIMP dark matter, arXiv:2308.05249 [INSPIRE].
K. Farakos, K. Kajantie, K. Rummukainen and M.E. Shaposhnikov, 3-D physics and the electroweak phase transition: Perturbation theory, Nucl. Phys. B 425 (1994) 67 [hep-ph/9404201] [INSPIRE].
K. Farakos, K. Kajantie, K. Rummukainen and M.E. Shaposhnikov, 3-d physics and the electroweak phase transition: A Framework for lattice Monte Carlo analysis, Nucl. Phys. B 442 (1995) 317 [hep-lat/9412091] [INSPIRE].
E. Braaten and A. Nieto, Effective field theory approach to high temperature thermodynamics, Phys. Rev. D 51 (1995) 6990 [hep-ph/9501375] [INSPIRE].
K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Generic rules for high temperature dimensional reduction and their application to the standard model, Nucl. Phys. B 458 (1996) 90 [hep-ph/9508379] [INSPIRE].
E. Braaten and A. Nieto, Free energy of QCD at high temperature, Phys. Rev. D 53 (1996) 3421 [hep-ph/9510408] [INSPIRE].
D. Croon, O. Gould, P. Schicho, T.V.I. Tenkanen and G. White, Theoretical uncertainties for cosmological first-order phase transitions, JHEP 04 (2021) 055 [arXiv:2009.10080] [INSPIRE].
A. Papaefstathiou and G. White, The electro-weak phase transition at colliders: confronting theoretical uncertainties and complementary channels, JHEP 05 (2021) 099 [arXiv:2010.00597] [INSPIRE].
O. Gould and T.V.I. Tenkanen, On the perturbative expansion at high temperature and implications for cosmological phase transitions, JHEP 06 (2021) 069 [arXiv:2104.04399] [INSPIRE].
P. Athron, C. Balazs, A. Fowlie, L. Morris, G. White and Y. Zhang, How arbitrary are perturbative calculations of the electroweak phase transition?, JHEP 01 (2023) 050 [arXiv:2208.01319] [INSPIRE].
D. Curtin, J. Roy and G. White, Gravitational waves and tadpole resummation: Efficient and easy convergence of finite temperature QFT, arXiv:2211.08218 [INSPIRE].
M. Kierkla, A. Karam and B. Swiezewska, Conformal model for gravitational waves and dark matter: a status update, JHEP 03 (2023) 007 [arXiv:2210.07075] [INSPIRE].
M. Carena, Z. Liu and Y. Wang, Electroweak phase transition with spontaneous Z2-breaking, JHEP 08 (2020) 107 [arXiv:1911.10206] [INSPIRE].
J. Ellis, M. Lewicki, M. Merchand, J.M. No and M. Zych, The scalar singlet extension of the Standard Model: gravitational waves versus baryogenesis, JHEP 01 (2023) 093 [arXiv:2210.16305] [INSPIRE].
T. Gorda, A. Helset, L. Niemi, T.V.I. Tenkanen and D.J. Weir, Three-dimensional effective theories for the two Higgs doublet model at high temperature, JHEP 02 (2019) 081 [arXiv:1802.05056] [INSPIRE].
S. Biondini, P. Schicho and T.V.I. Tenkanen, Strong electroweak phase transition in t-channel simplified dark matter models, JCAP 10 (2022) 044 [arXiv:2207.12207] [INSPIRE].
K. Kajantie, M. Laine, K. Rummukainen and Y. Schroder, The Pressure of hot QCD up to g6 ln(1/g), Phys. Rev. D 67 (2003) 105008 [hep-ph/0211321] [INSPIRE].
A. Gynther and M. Vepsalainen, Pressure of the standard model at high temperatures, JHEP 01 (2006) 060 [hep-ph/0510375] [INSPIRE].
A. Ekstedt, P. Schicho and T.V.I. Tenkanen, DRalgo: A package for effective field theory approach for thermal phase transitions, Comput. Phys. Commun. 288 (2023) 108725 [arXiv:2205.08815] [INSPIRE].
D. Cutting, M. Hindmarsh and D.J. Weir, Vorticity, kinetic energy, and suppressed gravitational wave production in strong first order phase transitions, Phys. Rev. Lett. 125 (2020) 021302 [arXiv:1906.00480] [INSPIRE].
F. Giese, T. Konstandin, K. Schmitz and J. van de Vis, Model-independent energy budget for LISA, JCAP 01 (2021) 072 [arXiv:2010.09744] [INSPIRE].
R. Jinno, T. Konstandin and H. Rubira, A hybrid simulation of gravitational wave production in first-order phase transitions, JCAP 04 (2021) 014 [arXiv:2010.00971] [INSPIRE].
M.A. Ajmi and M. Hindmarsh, Thermal suppression of bubble nucleation at first-order phase transitions in the early Universe, Phys. Rev. D 106 (2022) 023505 [arXiv:2205.04097] [INSPIRE].
L. Sagunski, P. Schicho and D. Schmitt, Supercool exit: Gravitational waves from QCD-triggered conformal symmetry breaking, Phys. Rev. D 107 (2023) 123512 [arXiv:2303.02450] [INSPIRE].
P. Athron, L. Morris and Z. Xu, How robust are gravitational wave predictions from cosmological phase transitions?, arXiv:2309.05474 [INSPIRE].
K. Kainulainen, V. Keus, L. Niemi, K. Rummukainen, T.V.I. Tenkanen and V. Vaskonen, On the validity of perturbative studies of the electroweak phase transition in the Two Higgs Doublet model, JHEP 06 (2019) 075 [arXiv:1904.01329] [INSPIRE].
L. Niemi, M.J. Ramsey-Musolf, T.V.I. Tenkanen and D.J. Weir, Thermodynamics of a Two-Step Electroweak Phase Transition, Phys. Rev. Lett. 126 (2021) 171802 [arXiv:2005.11332] [INSPIRE].
L. Niemi, P. Schicho and T.V.I. Tenkanen, Singlet-assisted electroweak phase transition at two loops, Phys. Rev. D 103 (2021) 115035 [arXiv:2103.07467] [INSPIRE].
T.V.I. Tenkanen and J. van de Vis, Speed of sound in cosmological phase transitions and effect on gravitational waves, JHEP 08 (2022) 302 [arXiv:2206.01130] [INSPIRE].
O. Gould and T.V.I. Tenkanen, Perturbative effective field theory expansions for cosmological phase transitions, arXiv:2309.01672 [INSPIRE].
J.I. Kapusta and C. Gale, Finite-temperature field theory: Principles and applications, Cambridge Monographs on Mathematical Physics, Cambridge University Press (2011), https://doi.org/10.1017/CBO9780511535130 [INSPIRE].
T. Matsubara, A New approach to quantum statistical mechanics, Prog. Theor. Phys. 14 (1955) 351 [INSPIRE].
M. Laine and A. Vuorinen, Basics of Thermal Field Theory, Lect. Notes Phys. 925 (2016) 1, [arXiv:1701.01554] [INSPIRE].
J.O. Andersen and M. Strickland, Resummation in hot field theories, Annals Phys. 317 (2005) 281 [hep-ph/0404164] [INSPIRE].
J. Löfgren, Stop comparing resummation methods, J. Phys. G 50 (2023) 125008 [arXiv:2301.05197] [INSPIRE].
O. Gould and J. Hirvonen, Effective field theory approach to thermal bubble nucleation, Phys. Rev. D 104 (2021) 096015 [arXiv:2108.04377] [INSPIRE].
O. Gould, Real scalar phase transitions: a nonperturbative analysis, JHEP 04 (2021) 057 [arXiv:2101.05528] [INSPIRE].
X.-p. Sun, Monte Carlo studies of three-dimensional O(1) and O(4) ϕ4 theory related to BEC phase transition temperatures, Phys. Rev. E 67 (2003) 066702 [hep-lat/0209144] [INSPIRE].
M. Laine, M. Meyer and G. Nardini, Thermal phase transition with full 2-loop effective potential, Nucl. Phys. B 920 (2017) 565 [arXiv:1702.07479] [INSPIRE].
L. Allwicher, P. Arnan, D. Barducci and M. Nardecchia, Perturbative unitarity constraints on generic Yukawa interactions, JHEP 10 (2021) 129 [arXiv:2108.00013] [INSPIRE].
S.S. AbdusSalam et al., Simple and statistically sound recommendations for analysing physical theories, Rept. Prog. Phys. 85 (2022) 052201 [arXiv:2012.09874] [INSPIRE].
A. Papaefstathiou and G. White, The Electro-Weak Phase Transition at Colliders: Discovery Post-Mortem, JHEP 02 (2022) 185 [arXiv:2108.11394] [INSPIRE].
S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].
E.J. Weinberg, Vacuum decay in theories with symmetry breaking by radiative corrections, Phys. Rev. D 47 (1993) 4614 [hep-ph/9211314] [INSPIRE].
C. Gowling and M. Hindmarsh, Observational prospects for phase transitions at LISA: Fisher matrix analysis, JCAP 10 (2021) 039 [arXiv:2106.05984] [INSPIRE].
G. Boileau, N. Christensen, C. Gowling, M. Hindmarsh and R. Meyer, Prospects for LISA to detect a gravitational-wave background from first order phase transitions, JCAP 02 (2023) 056 [arXiv:2209.13277] [INSPIRE].
A. Ekstedt, Higher-order corrections to the bubble-nucleation rate at finite temperature, Eur. Phys. J. C 82 (2022) 173 [arXiv:2104.11804] [INSPIRE].
A. Ekstedt, O. Gould and J. Hirvonen, BubbleDet: A Python package to compute functional determinants for bubble nucleation, arXiv:2308.15652 [INSPIRE].
B. Laurent and J.M. Cline, First principles determination of bubble wall velocity, Phys. Rev. D 106 (2022) 023501 [arXiv:2204.13120] [INSPIRE].
C. Caprini et al., Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions, JCAP 04 (2016) 001 [arXiv:1512.06239] [INSPIRE].
J. Hirvonen, Intuitive method for constructing effective field theories, arXiv:2205.02687 [INSPIRE].
A. Ekstedt, O. Gould and J. Löfgren, Radiative first-order phase transitions to next-to-next-to-leading order, Phys. Rev. D 106 (2022) 036012 [arXiv:2205.07241] [INSPIRE].
M.E. Peskin and D.V. Schroeder, An Introduction to quantum field theory, Addison-Wesley, Reading, U.S.A. (1995).
A.V. Manohar, Introduction to Effective Field Theories, arXiv:1804.05863 [INSPIRE].
C.P. Burgess, Introduction to Effective Field Theory, Cambridge University Press (2020), https://doi.org/10.1017/9781139048040 [INSPIRE].
J. Kublbeck, M. Bohm and A. Denner, Feyn Arts: Computer Algebraic Generation of Feynman Graphs and Amplitudes, Comput. Phys. Commun. 60 (1990) 165 [INSPIRE].
I. Ghisoiu and Y. Schroder, A New Method for Taming Tensor Sum-Integrals, JHEP 11 (2012) 010 [arXiv:1208.0284] [INSPIRE].
T.P. Cheng, E. Eichten and L.-F. Li, Higgs Phenomena in Asymptotically Free Gauge Theories, Phys. Rev. D 9 (1974) 2259 [INSPIRE].
Acknowledgments
We would like to acknowledge insightful conversations with A. Ekstedt, T.E. Gonzalo, J. Hirvonen, J. Löfgren, B. Świeżewska and T.V.I. Tenkanen. We would also like to thank J.E. Camargo-Molina and the Swedish Collegium for Advanced Study for hosting the Thermal Field Theory and Early Universe Phenomenology at the Botanical Garden workshop, during which part of this work was completed. O.G. (ORCID ID 0000-0002-7815-3379) was supported by U.K. Science and Technology Facilities Council (STFC) Consolidated Grant ST/T000732/1, a Research Leadership Award from the Leverhulme Trust, and a Royal Society Dorothy Hodgkin Fellowship. C.X. (ORCID ID 0000-0002-4886-9560) was supported by U.K. STFC Consolidated Grant ST/S000666/1.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2310.02308
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Gould, O., Xie, C. Higher orders for cosmological phase transitions: a global study in a Yukawa model. J. High Energ. Phys. 2023, 49 (2023). https://doi.org/10.1007/JHEP12(2023)049
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP12(2023)049