Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Singlet fermionic dark matter and the electroweak phase transition

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider a model with a gauge singlet Dirac fermion as a cold dark matter candidate. The dark matter particle communicates with the Standard Model via a gauge singlet scalar mediator that couples to the Higgs. The scalar mediator also serves to create a tree-level barrier in the scalar potential which leads to a strongly first order electroweak phase transition as required for Electroweak Baryogenesis. We find a large number of models that can account for all the dark matter and provide a strong phase transition while avoiding constraints from dark matter direct detection, electroweak precision data, and the latest Higgs data from the LHC. The next generation of direct detection experiments could rule out a large region of the parameter space but can be evaded in some regions when the Higgs-singlet mixing is very small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].

    ADS  Google Scholar 

  4. H. Davoudiasl, R. Kitano, T. Li and H. Murayama, The new minimal standard model, Phys. Lett. B 609 (2005) 117 [hep-ph/0405097] [INSPIRE].

    Article  ADS  Google Scholar 

  5. C. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].

    Article  ADS  Google Scholar 

  6. D. O’Connell, M.J. Ramsey-Musolf and M.B. Wise, Minimal extension of the standard model scalar sector, Phys. Rev. D 75 (2007) 037701 [hep-ph/0611014] [INSPIRE].

    ADS  Google Scholar 

  7. O. Bahat-Treidel, Y. Grossman and Y. Rozen, Hiding the Higgs at the LHC, JHEP 05 (2007)022 [hep-ph/0611162] [INSPIRE].

    Article  ADS  Google Scholar 

  8. V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC phenomenology of an extended standard model with a real scalar singlet, Phys. Rev. D 77 (2008)035005 [arXiv:0706.4311] [INSPIRE].

    ADS  Google Scholar 

  9. X.-G. He, T. Li, X.-Q. Li and H.-C. Tsai, Scalar dark matter effects in Higgs and top quark decays, Mod. Phys. Lett. A 22 (2007) 2121 [hep-ph/0701156] [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Gonderinger, H. Lim and M.J. Ramsey-Musolf, Complex scalar singlet dark matter: vacuum stability and phenomenology, Phys. Rev. D 86 (2012) 043511 [arXiv:1202.1316] [INSPIRE].

    ADS  Google Scholar 

  11. Y.G. Kim and K.Y. Lee, The minimal model of fermionic dark matter, Phys. Rev. D 75 (2007)115012 [hep-ph/0611069] [INSPIRE].

    ADS  Google Scholar 

  12. Y.G. Kim, K.Y. Lee and S. Shin, Singlet fermionic dark matter, JHEP 05 (2008) 100 [arXiv:0803.2932] [INSPIRE].

    ADS  Google Scholar 

  13. H.-Y. Qin, W.-Y. Wang and Z.-H. Xiong, A simple singlet fermionic dark-matter model revisited, Chin. Phys. Lett. 28 (2011) 111202 [INSPIRE].

    Article  ADS  Google Scholar 

  14. L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a standard model like Higgs at 125 GeV, Phys. Lett. B 716 (2012) 179 [arXiv:1203.2064] [INSPIRE].

    Article  ADS  Google Scholar 

  15. S. Baek, P. Ko, W.-I. Park and E. Senaha, Vacuum structure and stability of a singlet fermion dark matter model with a singlet scalar messenger, JHEP 11 (2012) 116 [arXiv:1209.4163] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M. Farina, D. Pappadopulo and A. Strumia, A modified naturalness principle and its experimental tests, JHEP 08 (2013) 022 [arXiv:1303.7244] [INSPIRE].

    ADS  Google Scholar 

  17. K. Petraki and A. Kusenko, Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector, Phys. Rev. D 77 (2008) 065014 [arXiv:0711.4646] [INSPIRE].

    ADS  Google Scholar 

  18. A. Sakharov, Violation of CP invariance, c asymmetry, and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [JETP Lett. 5 (1967) 24] [Sov. Phys. Usp. 34 (1991)392] [Usp. Fiz. Nauk. 161 (1991) 61] [INSPIRE].

    Google Scholar 

  19. M. Gavela, P. Hernández, J. Orloff and O. Pene, Standard model CP-violation and baryon asymmetry, Mod. Phys. Lett. A 9 (1994) 795 [hep-ph/9312215] [INSPIRE].

    Article  ADS  Google Scholar 

  20. M. Gavela, P. Hernández, J. Orloff, O. Pene and C. Quimbay, Standard model CP-violation and baryon asymmetry. Part 2: finite temperature, Nucl. Phys. B 430 (1994) 382 [hep-ph/9406289] [INSPIRE].

    Article  ADS  Google Scholar 

  21. P. Huet and E. Sather, Electroweak baryogenesis and standard model CP-violation, Phys. Rev. D 51 (1995) 379 [hep-ph/9404302] [INSPIRE].

    ADS  Google Scholar 

  22. V. Kuzmin, V. Rubakov and M. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].

    Article  ADS  Google Scholar 

  23. A.G. Cohen, D. Kaplan and A. Nelson, Progress in electroweak baryogenesis, Ann. Rev. Nucl. Part. Sci. 43 (1993) 27 [hep-ph/9302210] [INSPIRE].

    Article  ADS  Google Scholar 

  24. M. Trodden, Electroweak baryogenesis, Rev. Mod. Phys. 71 (1999) 1463 [hep-ph/9803479] [INSPIRE].

    Article  ADS  Google Scholar 

  25. D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M. Pietroni, The electroweak phase transition in a nonminimal supersymmetric model, Nucl. Phys. B 402 (1993) 27 [hep-ph/9207227] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A. Menon, D. Morrissey and C. Wagner, Electroweak baryogenesis and dark matter in the NMSSM, Phys. Rev. D 70 (2004) 035005 [hep-ph/0404184] [INSPIRE].

    ADS  Google Scholar 

  28. S. Profumo, M.J. Ramsey-Musolf and G. Shaughnessy, Singlet Higgs phenomenology and the electroweak phase transition, JHEP 08 (2007) 010 [arXiv:0705.2425] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J.M. Cline, G. Laporte, H. Yamashita and S. Kraml, Electroweak phase transition and LHC signatures in the singlet majoron model, JHEP 07 (2009) 040 [arXiv:0905.2559] [INSPIRE].

    Article  ADS  Google Scholar 

  30. J.R. Espinosa, T. Konstandin and F. Riva, Strong electroweak phase transitions in the standard model with a singlet, Nucl. Phys. B 854 (2012) 592 [arXiv:1107.5441] [INSPIRE].

    Article  ADS  Google Scholar 

  31. D.J. Chung, A.J. Long and L.-T. Wang, The 125 GeV Higgs and electroweak phase transition model classes, Phys. Rev. D 87 (2013) 023509 [arXiv:1209.1819] [INSPIRE].

    ADS  Google Scholar 

  32. J.M. Cline and K. Kainulainen, Electroweak baryogenesis and dark matter from a singlet Higgs, JCAP 01 (2013) 012 [arXiv:1210.4196] [INSPIRE].

    Article  ADS  Google Scholar 

  33. H.H. Patel and M.J. Ramsey-Musolf, Stepping into electroweak symmetry breaking: phase transitions and Higgs phenomenology, Phys. Rev. D 88 (2013) 035013 [arXiv:1212.5652] [INSPIRE].

    ADS  Google Scholar 

  34. J. Espinosa and M. Quirós, The electroweak phase transition with a singlet, Phys. Lett. B 305 (1993)98 [hep-ph/9301285] [INSPIRE].

    Article  ADS  Google Scholar 

  35. J. Choi and R. Volkas, Real Higgs singlet and the electroweak phase transition in the standard model, Phys. Lett. B 317 (1993) 385 [hep-ph/9308234] [INSPIRE].

    Article  ADS  Google Scholar 

  36. S. Ham, Y. Jeong and S. Oh, Electroweak phase transition in an extension of the standard model with a real Higgs singlet, J. Phys. G 31 (2005) 857 [hep-ph/0411352] [INSPIRE].

    Article  ADS  Google Scholar 

  37. A. Ahriche, What is the criterion for a strong first order electroweak phase transition in singlet models?, Phys. Rev. D 75 (2007) 083522 [hep-ph/0701192] [INSPIRE].

    ADS  Google Scholar 

  38. J.R. Espinosa, B. Gripaios, T. Konstandin and F. Riva, Electroweak baryogenesis in non-minimal composite Higgs models, JCAP 01 (2012) 012 [arXiv:1110.2876] [INSPIRE].

    Article  ADS  Google Scholar 

  39. V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf and G. Shaughnessy, Complex singlet extension of the standard model, Phys. Rev. D 79 (2009) 015018 [arXiv:0811.0393] [INSPIRE].

    ADS  Google Scholar 

  40. T.A. Chowdhury, M. Nemevšek, G. Senjanović and Y. Zhang, Dark matter as the trigger of strong electroweak phase transition, JCAP 02 (2012) 029 [arXiv:1110.5334] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A. Ahriche and S. Nasri, Light dark matter, light Higgs and the electroweak phase transition, Phys. Rev. D 85 (2012) 093007 [arXiv:1201.4614] [INSPIRE].

    ADS  Google Scholar 

  42. J.M. Cline and K. Kainulainen, Improved electroweak phase transition with subdominant inert doublet dark matter, Phys. Rev. D 87 (2013) 071701 [arXiv:1302.2614] [INSPIRE].

    ADS  Google Scholar 

  43. M. Frigerio, A. Pomarol, F. Riva and A. Urbano, Composite scalar dark matter, JHEP 07 (2012)015 [arXiv:1204.2808] [INSPIRE].

    Article  ADS  Google Scholar 

  44. ATLAS collaboration, Study of the channel \( H\to {Z^{*}}Z\to {\ell^{+}}{\ell^{-}}\;q\overline{q} \) in the mass range 120180 GeV with the ATLAS Detector at \( \sqrt{s}=7 \) TeV, ATLAS-CONF-2012-163 (2012)

  45. J.R. Espinosa, M. Muhlleitner, C. Grojean and M. Trott, Probing for invisible Higgs decays with global fits, JHEP 09 (2012) 126 [arXiv:1205.6790] [INSPIRE].

    Article  ADS  Google Scholar 

  46. J. Ellis and T. You, Updated global analysis of Higgs couplings, JHEP 06 (2013) 103 [arXiv:1303.3879] [INSPIRE].

    Article  ADS  Google Scholar 

  47. A. Falkowski, F. Riva and A. Urbano, Higgs at last, arXiv:1303.1812 [INSPIRE].

  48. CMS collaboration, Search for a standard-model-like Higgs boson with a mass in the range 145 to 1000 GeV at the LHC, Eur. Phys. J. C 73 (2013) 2469 [arXiv:1304.0213] [INSPIRE].

    ADS  Google Scholar 

  49. S. Baek, P. Ko and W.-I. Park, Search for the Higgs portal to a singlet fermionic dark matter at the LHC, JHEP 02 (2012) 047 [arXiv:1112.1847] [INSPIRE].

    Article  ADS  Google Scholar 

  50. M. Baak et al., The electroweak fit of the standard model after the discovery of a new boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].

    Article  ADS  Google Scholar 

  51. O. Eberhardt et al., Impact of a Higgs boson at a mass of 126 GeV on the standard model with three and four fermion generations, Phys. Rev. Lett. 109 (2012) 241802 [arXiv:1209.1101] [INSPIRE].

    Article  ADS  Google Scholar 

  52. Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].

  53. P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].

    Article  ADS  Google Scholar 

  54. A. Sommerfeld, Über die Beugung und Bremsung der Elektronen, Ann. Phys. 403 (1931) 257.

    Article  Google Scholar 

  55. T. Nihei and M. Sasagawa, Relic density and elastic scattering cross-sections of the neutralino in the MSSM with CP-violating phases, Phys. Rev. D 70 (2004) 055011 [Erratum ibid. D 70 (2004) 079901] [hep-ph/0404100] [INSPIRE].

    ADS  Google Scholar 

  56. J.R. Ellis, A. Ferstl and K.A. Olive, Reevaluation of the elastic scattering of supersymmetric dark matter, Phys. Lett. B 481 (2000) 304 [hep-ph/0001005] [INSPIRE].

    Article  ADS  Google Scholar 

  57. A. Bottino et al., Exploring the supersymmetric parameter space by direct search for WIMPs, Phys. Lett. B 402 (1997) 113 [hep-ph/9612451] [INSPIRE].

    Article  ADS  Google Scholar 

  58. XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].

    Article  ADS  Google Scholar 

  59. XENON1T collaboration, E. Aprile, The XENON1T dark matter search experiment, arXiv:1206.6288 [INSPIRE].

  60. L. Carson, X. Li, L.D. McLerran and R.-T. Wang, Exact computation of the small fluctuation determinant around a sphaleron, Phys. Rev. D 42 (1990) 2127 [INSPIRE].

    ADS  Google Scholar 

  61. H.H. Patel and M.J. Ramsey-Musolf, Baryon washout, electroweak phase transition and perturbation theory, JHEP 07 (2011) 029 [arXiv:1101.4665] [INSPIRE].

    Article  ADS  Google Scholar 

  62. C.L. Wainwright, S. Profumo and M.J. Ramsey-Musolf, Phase transitions and gauge artifacts in an abelian Higgs plus singlet model, Phys. Rev. D 86 (2012) 083537 [arXiv:1204.5464] [INSPIRE].

    ADS  Google Scholar 

  63. J. Espinosa, T. Konstandin, J. No and M. Quirós, Some cosmological implications of hidden sectors, Phys. Rev. D 78 (2008) 123528 [arXiv:0809.3215] [INSPIRE].

    ADS  Google Scholar 

  64. M. Holthausen, K.S. Lim and M. Lindner, Planck scale boundary conditions and the Higgs mass, JHEP 02 (2012) 037 [arXiv:1112.2415] [INSPIRE].

    Article  ADS  Google Scholar 

  65. J. Elias-Miro et al., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].

    Article  ADS  Google Scholar 

  66. Z.-z. Xing, H. Zhang and S. Zhou, Impacts of the Higgs mass on vacuum stability, running fermion masses and two-body Higgs decays, Phys. Rev. D 86 (2012) 013013 [arXiv:1112.3112] [INSPIRE].

    ADS  Google Scholar 

  67. W. Rodejohann and H. Zhang, Impact of massive neutrinos on the Higgs self-coupling and electroweak vacuum stability, JHEP 06 (2012) 022 [arXiv:1203.3825] [INSPIRE].

    Article  ADS  Google Scholar 

  68. F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].

    Article  ADS  Google Scholar 

  69. G. Degrassi et al., Higgs mass and vacuum stability in the standard model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  70. S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].

    Article  ADS  Google Scholar 

  71. I. Masina, The Higgs boson and top quark masses as tests of electroweak vacuum stability, Phys. Rev. D 87 (2013) 053001 [arXiv:1209.0393] [INSPIRE].

    ADS  Google Scholar 

  72. W. Chao, M. Gonderinger and M.J. Ramsey-Musolf, Higgs vacuum stability, neutrino mass and dark matter, Phys. Rev. D 86 (2012) 113017 [arXiv:1210.0491] [INSPIRE].

    ADS  Google Scholar 

  73. M. Gonderinger, Y. Li, H. Patel and M.J. Ramsey-Musolf, Vacuum stability, perturbativity and scalar singlet dark matter, JHEP 01 (2010) 053 [arXiv:0910.3167] [INSPIRE].

    Article  ADS  Google Scholar 

  74. S. Profumo, L. Ubaldi and C. Wainwright, Singlet scalar dark matter: monochromatic gamma rays and metastable vacua, Phys. Rev. D 82 (2010) 123514 [arXiv:1009.5377] [INSPIRE].

    ADS  Google Scholar 

  75. C.-S. Chen and Y. Tang, Vacuum stability, neutrinos and dark matter, JHEP 04 (2012) 019 [arXiv:1202.5717] [INSPIRE].

    Article  ADS  Google Scholar 

  76. C. Cheung, M. Papucci and K.M. Zurek, Higgs and dark matter hints of an oasis in the desert, JHEP 07 (2012) 105 [arXiv:1203.5106] [INSPIRE].

    Article  ADS  Google Scholar 

  77. J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the electroweak vacuum by a scalar threshold effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].

    Article  ADS  Google Scholar 

  78. O. Lebedev, On stability of the electroweak vacuum and the Higgs portal, Eur. Phys. J. C 72 (2012)2058 [arXiv:1203.0156] [INSPIRE].

    Article  ADS  Google Scholar 

  79. A. Abada and S. Nasri, RGE of a cold dark matter two-singlet model, Phys. Rev. D 88 (2013)016006 [arXiv:1304.3917] [INSPIRE].

    ADS  Google Scholar 

  80. A. Barroso, P. Ferreira, I. Ivanov and R. Santos, Metastability bounds on the two Higgs doublet model, JHEP 06 (2013) 045 [arXiv:1303.5098] [INSPIRE].

    Article  ADS  Google Scholar 

  81. A. Abdo et al., Fermi LAT search for photon lines from 30 to 200 GeV and dark matter implications, Phys. Rev. Lett. 104 (2010) 091302 [arXiv:1001.4836] [INSPIRE].

    Article  ADS  Google Scholar 

  82. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Hogan.

Additional information

ArXiv ePrint: 1305.3452

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fairbairn, M., Hogan, R. Singlet fermionic dark matter and the electroweak phase transition. J. High Energ. Phys. 2013, 22 (2013). https://doi.org/10.1007/JHEP09(2013)022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)022

Keywords

Navigation