Abstract
We critically examine the magnitude of theoretical uncertainties in perturbative calculations of fist-order phase transitions, using the Standard Model effective field theory as our guide. In the usual daisy-resummed approach, we find large uncertainties due to renormalisation scale dependence, which amount to two to three orders-of-magnitude uncertainty in the peak gravitational wave amplitude, relevant to experiments such as LISA. Alternatively, utilising dimensional reduction in a more sophisticated perturbative approach drastically reduces this scale dependence, pushing it to higher orders. Further, this approach resolves other thorny problems with daisy resummation: it is gauge invariant which is explicitly demonstrated for the Standard Model, and avoids an uncontrolled derivative expansion in the bubble nucleation rate.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
D. J. Weir, Gravitational waves from a first order electroweak phase transition: a brief review, Phil. Trans. Roy. Soc. Land. A 376 (2018) 20170126 [arXiv:1705.01783] [INSPIRE].
C. Caprini and D. G. Figueroa, Cosmological backgrounds of gravitational waves, Class. Quant. Grav. 35 (2018) 163001 [arXiv:1801.04268] [INSPIRE].
A. Mazumdar and G. White, Review of cosmic phase transitions: their significance and experimental signatures, Rept. Frog. Phys. 82 (2019) 076901 [arXiv:1811.01948] [INSPIRE].
E. Senaha, Symmetry restoration and breaking at finite temperature: an introductory review, Symmetry 12 (2020) 733 [INSPIRE].
C. Caprini et al., Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions, JCAP 04 (2016) 001 [arXiv:1512.06239] [INSPIRE]
C. Caprini et al., Detecting gravitational waves from cosmological phase transitions with LISA: an update, JCAP 03 (2020) 024 [arXiv:1910.13125] [INSPIRE].
D. E. Morrissey and M. J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].
G. A. White, A pedagogical introduction to electroweak baryogenesis, IOP, Bristol, U.K. (2016) [INSPIRE].
K. Kajantie, M. Laine, K. Rummukainen and M. E. Shaposhnikov, The electroweak phase transition: a nonperturbative analysis, Nucl. Phys. B 466 (1996) 189 [hep-lat/9510020] [INSPIRE].
K. Kajantie, M. Laine, K. Rummukainen and M. E. Shaposhnikov, Is there a hot electroweak phase transition at mH larger or equal to mW?, Phys. Rev. Lett. 77 (1996) 2887 [hep-ph/9605288] [INSPIRE].
K. Kajantie, M. Laine, K. Rummukainen and M. E. Shaposhnikov, A nonperturbative analysis of the finite T phase transition in SU(2) × U(1) electroweak theory, Nucl. Phys. B 493 (1997) 413 [hep-lat/9612006] [INSPIRE].
F. Csikor, Z. Fodor and J. Heitger, Endpoint of the hot electroweak phase transition, Phys. Rev. Lett. 82 (1999) 21 [hep-ph/9809291] [INSPIRE].
M. D’Onofrio and K. Rummukainen, Standard model cross-over on the lattice, Phys. Rev. D 93 (2016) 025003 [arXiv:1508.07161] [INSPIRE].
G. Gil, P. Chankowski and M. Krawczyk, Inert dark matter and strong electroweak phase transition, Phys. Lett. B 717 (2012) 396 [arXiv:1207.0084] [INSPIRE].
M. Carena, G. Nardini, M. Quirós and C. E. M. Wagner, MSSM electroweak baryogenesis and LHC data, JHEP 02 (2013) 001 [arXiv:1207.6330] [INSPIRE].
S. Profumo, M. J. Ramsey-Musolf, C. L. Wainwright and P. Winslow, Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies, Phys. Rev. D 91 (2015) 035018 [arXiv:1407.5342] [INSPIRE].
J. Kozaczuk, S. Profumo, L. S. Haskins and C. L. Wainwright, Cosmological phase transitions and their properties in the NMSSM, JHEP 01 (2015) 144 [arXiv:1407.4134] [INSPIRE].
V. Vaskonen, Electroweak baryogenesis and gravitational waves from a real scalar singlet, Phys. Rev. D 95 (2017) 123515 [arXiv:1611.02073] [INSPIRE].
G. C. Dorsch, S. J. Huber, T. Konstandin and J. M. No, A second Higgs doublet in the early universe: baryogenesis and gravitational waves, JCAP 05 (2017) 052 [arXiv:1611.05874] [INSPIRE].
C.-W. Chiang, M. J. Ramsey-Musolf and E. Senaha, Standard model with a complex scalar singlet: cosmological implications and theoretical considerations, Phys. Rev. D 97 (2018) 015005 [arXiv:1707.09960] [INSPIRE].
A. Beniwal, M. Lewicki, M. White and A. G. Williams, Gravitational waves and electroweak baryogenesis in a global study of the extended scalar singlet model, JHEP 02 (2019) 183 [arXiv:1810.02380] [INSPIRE].
S. Bruggisser, B. Von Harling, O. Matsedonskyi and G. Servant, Electroweak phase transition and baryogenesis in composite Higgs models, JHEP 12 (2018) 099 [arXiv:1804.07314] [INSPIRE].
P. Athron, C. Balázs, A. Fowlie, G. Pozzo, G. White and Y. Zhang, Strong first-order phase transitions in the NMSSM — a comprehensive survey, JHEP 11 (2019) 151 [arXiv:1908.11847] [INSPIRE].
K. Kainulainen, V. Keus, L. Niemi, K. Rummukainen, T. V. I. Tenkanen and V. Vaskonen, On the validity of perturbative studies of the electroweak phase transition in the two Higgs doublet model, JHEP 06 (2019) 075 [arXiv:1904.01329] [INSPIRE].
C. Grojean, G. Servant and J. D. Wells, First-order electroweak phase transition in the standard model with a low cutoff, Phys. Rev. D 71 (2005) 036001 [hep-ph/0407019] [INSPIRE].
C. Delaunay, C. Grojean and J. D. Wells, Dynamics of non-renormalizable electroweak symmetry breaking, JHEP 04 (2008) 029 [arXiv:0711.2511] [INSPIRE].
M. Chala, C. Krause and G. Nardini, Signals of the electroweak phase transition at colliders and gravitational wave observatories, JHEP 07 (2018) 062 [arXiv:1802.02168] [INSPIRE].
H. H. Patel and M. J. Ramsey-Musolf, Stepping into electroweak symmetry breaking: phase transitions and Higgs phenomenology, Phys. Rev. D 88 (2013) 035013 [arXiv:1212.5652] [INSPIRE].
H. H. Patel, M. J. Ramsey-Musolf and M. B. Wise, Color breaking in the early universe, Phys. Rev. D 88 (2013) 015003 [arXiv:1303.1140] [INSPIRE].
N. Blinov, J. Kozaczuk, D. E. Morrissey and C. Tamarit, Electroweak baryogenesis from exotic electroweak symmetry breaking, Phys. Rev. D 92 (2015) 035012 [arXiv:1504.05195] [INSPIRE].
S. ArunaSalam and A. Kobakhidze, Electroweak monopoles and the electroweak phase transition, Eur. Phys. J. C 77 (2017) 444 [arXiv:1702.04068] [INSPIRE].
I. Baldes, T. Konstandin and G. Servant, A first-order electroweak phase transition from varying Yukawas, Phys. Lett. B 786 (2018) 373 [arXiv:1604.04526] [INSPIRE].
S. A. R. Ellis, S. Ipek and G. White, Electroweak baryogenesis from temperature-varying couplings, JHEP 08 (2019) 002 [arXiv:1905.11994] [INSPIRE].
B. von Harling and G. Servant, QCD-induced electroweak phase transition, JHEP 01 (2018) 159 [arXiv:1711.11554] [INSPIRE].
S. Ipek and T. M. P. Tait, Early cosmological period of QCD confinement, Phys. Rev. Lett. 122 (2019) 112001 [arXiv:1811.00559] [INSPIRE].
D. Croon, J. N. Howard, S. Ipek and T. M. P. Tait, QCD baryogenesis, Phys. Rev. D 101 (2020) 055042 [arXiv:1911.01432] [INSPIRE].
A. Angelescu and P. Huang, Multiste p strongly first order phase transitions from new fermions at the TeV scale, Phys. Rev. D 99 (2019) 055023 [arXiv:1812.08293] [INSPIRE].
P. Schwaller, Gravitational waves from a dark phase transition, Phys. Rev. Lett. 115 (2015) 181101 [arXiv:1504.07263] [INSPIRE].
D. Croon, V. Sanz and G. White, Model discrimination in gravitational wave spectra from dark phase transitions, JHEP 08 (2018) 203 [arXiv:1806.02332] [INSPIRE].
D. Croon, T.E. Gonzalo and G. White, Gravitational waves from a Pati-Salam phase transition, JHEP 02 (2019) 083 [arXiv:1812.02747] [INSPIRE].
E. Hall, T. Konstandin, R. McGehee, H. Murayama and G. Servant , Baryogenesis from a dark first-order phase transition, JHEP 04 (2020) 042 [arXiv:1910.08068] [INSPIRE].
D. Croon, A. Kusenko, A. Mazumdar and G. White, Solitosynthesis and gravitational waves, Phys. Rev. D 101 (2020) 085010 [arXiv:1910.09562] [INSPIRE].
D. Croon, R. Houtz and V. Sanz, Dynamical axions and gravitational waves, JHEP 07 (2019) 146 [arXiv:1904.10967] [INSPIRE].
D. Curtin, P. Meade and C.-T. Yu, Testing electroweak baryogenesis with future colliders, JHEP 11 (2014) 127 [arXiv:1409.0005] [INSPIRE].
A. V. Kotwal, M. J. Ramsey-Musolf, J. M. No and P. Winslow, Singlet-catalyzed electroweak phase transitions in the 100 TeV frontier, Phys. Rev. D 94 (2016) 035022 [arXiv:1605.06123] [INSPIRE].
M. J. Ramsey-Musolf, The electroweak phase transition: a collider target, JHEP 09 (2020) 179 [arXiv:1912.07189] [INSPIRE].
K. Assamagan et al., The Higgs portal and cosmology, arXiv:1604.05324 [INSPIRE].
I. Baldes and C. Garcia-Cely, Strong gravitational radiation from a simple dark matter model, JHEP 05 (2019) 190 [arXiv:1809.01198] [INSPIRE].
A. D. Linde, Infrared problem in thermodynamics of the Yang-Mills gas, Phys. Lett. B 96 (1980) 289 [INSPIRE].
L. Dolan and R. Jackiw, Symmetry behavior at finite temperature, Phys. Rev. D 9 (1974) 3320 [INSPIRE].
D. A. Kirzhnits and A. D. Linde, Symmetry behavior in gauge theories, Annals Phys. 101 (1976) 195 [INSPIRE].
R. R. Parwani, Resummation in a hot scalar field theory, Phys. Rev. D 45 (1992) 4695 [Erratum ibid. 48 (1993) 5965] [hep-ph/9204216] [INSPIRE].
P. B. Arnold and O. Espinosa, The effective potential and first order phase transitions: beyond leading-order, Phys. Rev. D 47 (1993) 3546 [Erratum ibid. 50 (1994) 6662] [ hep-ph/9212235] [INSPIRE].
J. M. Cline, K. Kainulainen and M. Trott, Electroweak baryogenesis in two Higgs doublet models and B meson anomalies, JHEP 11 (2011) 089 [arXiv:1107.3559] [INSPIRE].
M. Laine, M. Meyer and G. Nardini, Thermal phase transition with full 2-loop effective potential, Nucl. Phys. B 920 (2017) 565 [arXiv:1702.07479] [INSPIRE].
D. Curtin, P. Meade and H. Ramani, Thermal resummation and phase transitions, Eur. Phys. J. C 78 (2018) 787 [arXiv:1612.00466] [INSPIRE].
E. Braaten and R. D. Pisarski, Simple effective Lagrangian for hard thermal loops, Phys. Rev. D 45 (1992) R1827 [INSPIRE].
P. H. Ginsparg, First order and second order phase transitions in gauge theories at finite temperature, Nu cl. Phys. B 170 (1980) 388 [INSPIRE].
T. Appelquist and R. D. Pisarski, High-temperature Yang-Mills theories and three-dimensional quantum chromodynamics, Phys. Rev. D 23 (1981) 2305 [INSPIRE].
S. Nadkarni, Dimensional reduction in hot QCD, Phys. Rev. D 27 (1983) 917 [INSPIRE].
N. P. Landsman, Limitations to dimensional reduction at high temperature, Nucl. Phys. B 322 (1989) 498 [INSPIRE].
K. Farakos, K. Kajantie, K. Rummukainen and M. E. Shaposhnikov, 3D physics and the electroweak phase transition: perturbation theory, Nucl. Phys. B 425 (1994) 67 [hep-ph/9404201] [INSPIRE].
E. Braaten and A. Nieto, Effective field theory approach to high temperature thermodynamics, Phys. Rev. D 51 (1995) 6990 [hep-ph/9501375] [INSPIRE].
E. Braaten and A. Nieto, Free energy of QCD at high temperature, Phys. Rev. D 53 (1996) 3421 [hep-ph/9510408] [INSPIRE].
K. Kajantie, M. Laine, K. Rummukainen and M. E. Shaposhnikov, Generic rules for high temperature dimensional reduction and their application to the standard model, Nucl. Phys. B 458 (1996) 90 [hep-ph/9508379] [INSPIRE].
K. Farakos, K. Kajantie, K. Rummukainen and M. E. Shaposhnikov, 3D physics and the electroweak phase transition: a framework for lattice Monte Carlo analysis, Nucl. Phys. B 442 (1995) 317 [hep-lat/9412091] [INSPIRE].
W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].
B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].
P. H. Damgaard, A. Haarr, D. O’Connell and A. Tranberg, Effective field theory and electroweak baryogenesis in the singlet-extended standard model, JHEP 02 (2016) 107 [arXiv:1512.01963] [INSPIRE].
J. de Vries, M. Postma, J. van de Vis and G. White, Electroweak baryogenesis and the standard model effective field theory, JHEP 01 (2018) 089 [arXiv:1710.04061] [INSPIRE].
C. Balázs, G. White and J. Yue, Effective field theory, electric dipole moments and electroweak baryogenesis, JHEP 03 (2017) 030 [arXiv: 1612. 01270] [INSPIRE].
J. De Vries, M. Postma and J. van de Vis, The role of leptons in electroweak baryogenesis, JHEP 04 (2019) 024 [arXiv:1811.11104] [INSPIRE].
V. Q. Phong, P. H. Khiem, N. P. D. Loc and H. N. Long, Sphaleron in the first-order electroweak phase transition with the dimension-six Higgs field operator, Phys. Rev. D 101 (2020) 116010 [arXiv:2003.09625] [INSPIRE].
J. de Blas, M. Chala, M. Pérez-Victoria and J. Santiago, Observable effects of general new scalar particles, JHEP 04 (2015) 078 [arXiv:1412.8480] [INSPIRE].
D. Marzocca et al., BSM benchmarks for effective field theories in Higgs and electroweak physics, arXiv:2009.01249 [INSPIRE].
D. Bödeker, L. Fromme, S. J. Huber and M. Seniuch, The baryon asymmetry in the standard model with a low cut-off, JHEP 02 (2005) 026 [hep-ph/0412366] [INSPIRE].
R.-G. Cai, M. Sasaki and S.-J. Wang, The gravitational waves from the first-order phase transition with a dimension-six operator, JCAP 08 (2017) 004 [arXiv:1707.03001] [INSPIRE].
S. J. Huber and T. Konstandin, Production of gravitational waves in the NMSSM, JCAP 05 (2008) 017 [arXiv:0709.2091] [INSPIRE].
H. H. Patel and M. J. Ramsey-Musolf, Baryon washout, electroweak phase transition, and perturbation theory, JHEP 07 (2011) 029 [arXiv:1101.4665] [INSPIRE].
C. Wainwright, S. Profumo and M. J. Ramsey-Musolf, Gravity waves from a cosmological phase transition: gauge artifacts and daisy resummations, Phys. Rev. D 84 (2011) 023521 [arXiv:1104.5487] [INSPIRE].
C. L. Wainwright, S. Profumo and M. J. Ramsey-Musolf , Phase transitions and gauge artifacts in an Abelian Higgs plus singlet model, Phys. Rev. D 86 (2012) 083537 [arXiv:1204.5464] [INSPIRE].
C.-W. Chiang and E. Senaha, On gauge dependence of gravitational waves from a first-order phase transition in classical scale-invariant U(1)′ models, Phys. Lett. B 774 (2017) 489 [arXiv:1707.06765] [INSPIRE].
B. Jain, S. J. Lee and M. Son, Validity of the effective potential and the precision of Higgs field self-couplings, Phys. Rev. D 98 (2018) 075002 [arXiv:1709.03232] [INSPIRE].
C.-W. Chiang, Y.-T. Li and E. Senaha, Revisiting electroweak phase transition in the standard model with a real singlet scalar, Phys. Lett. B 789 (2019) 154 [arXiv:1808.01098] [INSPIRE].
T. Prokopec, J. Rezacek and B. Świezewska, Gravitational waves from conformal symmetry breaking, JCAP 02 (2019) 009 [arXiv:1809.11129] [INSPIRE].
O. Gould, J. Kozaczuk, L. Niemi, M. J. Ramsey-Musolf, T. V. I. Tenkanen and D. J. Weir, Nonperturbative analysis of the gravitational waves from a first-order electroweak phase transition, Phys. Rev. D 100 (2019) 115024 [arXiv:1903.11604] [INSPIRE].
M. Carena, Z. Liu and Y. Wang, Electroweak phase transition with spontaneous Z2-breaking, JHEP 08 (2020) 107 [arXiv:1911.10206] [INSPIRE].
J. M. Cline and K. Kainulainen, Supersymmetric electroweak phase transition: dimensional reduction versus effective potential, Nucl. Phys. B 510 (1998) 88 [hep-ph/9705201] [INSPIRE].
I. Affieck, Quantum statistical metastability, Phys. Rev. Lett. 46 (1981) 388 [INSPIRE].
A. D. Linde, Decay of the false vacuum at finite temperature, Nucl. Phys. B 216 (1983) 421 [Erratum ibid. 223 (1983) 544] [INSPIRE].
J. S. Langer, Theory of the condensation point, Annals Phys. 41 (1967) 108 [Annals Phys. 281 (2000) 941] [INSPIRE].
J. S. Langer, Statistical theory of the decay of metastable states, Annals Phys. 54 (1969) 258 [INSPIRE].
K. Enqvist, J. Ignatius, K. Kajantie and K. Rummukainen, Nucleation and bubble growth in a first order cosmological electroweak phase transition, Phys. Rev. D 45 (1992) 3415 [INSPIRE].
R. Jinno, S. Lee, H. Seong and M. Takimoto, Gravitational waves from first-order phase transitions: towards model separation by bubble nucleation rate, JCAP 11 (2017) 050 [arXiv:1708.01253] [INSPIRE].
M. Hindmarsh and M. Hijazi, Gravitational waves from first order cosmological phase transitions in the sound shell model, JCAP 12 (2019) 062 [arXiv:1909.10040] [INSPIRE].
J. R. Espinosa, T. Konstandin, J. M. No and G. Servant, Energy budget of cosmological first-order phase transitions, JCAP 06 (2010) 028 [arXiv:1004.4187] [INSPIRE].
M. Hindmarsh, S. J. Huber, K. Rummukainen and D. J. Weir, Shape of the acoustic gravitational wave power spectrum from a first order phase transition, Phys. Rev. D 96 (2017) 103520 [Erratum ibid. 101 (2020) 089902] [arXiv:1704.05871] [INSPIRE].
F. Giese, T. Konstandin and J. van de Vis, Model-independent energy budget of cosmological first-order phase transitions — a sound argument to go beyond the bag model, JCAP 07 (2020) 057 [arXiv:2004.06995] [INSPIRE].
T. Brauner, T. V. I. Tenkanen, A. Tranberg, A. Vuorinen and D. J. Weir, Dimensional reduction of the standard model coupled to a new singlet scalar field, JHEP 03 (2017) 007 [arXiv:1609.06230] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
F. Karsch, A. Patkos and P. Petreczky, Screened perturbation theory, Phys. Lett. B 401 (1997) 69 [hep-ph/9702376] [INSPIRE].
J. O. Andersen and L. Kyllingstad, Four-loop screened perturbation theory, Phys. Rev. D 78 (2008) 076008 [arXiv:0805.4478] [INSPIRE].
P. M. Stevenson, Optimized perturbation theory, Phys. Rev. D 23 (1981) 2916 [INSPIRE].
E. J. Weinberg and A.-Q. Wu, Understanding complex perturbative effective potentials, Phys. Rev. D 36 (1987) 2474 [INSPIRE].
A. Masoumi, K. D. Olum and B. Shlaer, Efficient numerical solution to vacuum decay with many fields, JCAP 01 (2017) 051 [arXiv:1610.06594] [INSPIRE].
P. Athron, C. Balázs, M. Bardsley, A. Fowlie, D. Harries and G. White, BubbleProfiler: finding the field profile and action for cosmological phase transitions, Comput. Phys. Commun. 244 (2019) 448 [arXiv:1901.03714] [INSPIRE].
L. P. Csernai and J. I. Kapusta, Nucleation of relativistic first order phase transitions, Phys. Rev. D 46 (1992) 1379 [INSPIRE].
M. E. Carrington and J. I. Kapusta, Dynamics of the electroweak phase transition, Phys. Rev. D 47 (1993) 5304 [INSPIRE].
I. Ghişoiu, J. Möller and Y. Schröder, Debye screening mass of hot Yang-Mills theory to three-loop order, JHEP 11 (2015) 121 [arXiv:1509.08727] [INSPIRE].
M. Laine, P. Schicho and Y. Schroder, Soft thermal contributions to 3-loop gauge coupling, JHEP 05 (2018) 037 [arXiv:1803.08689] [INSPIRE].
M. Laine and A. Vuorinen, Basics of thermal field theory, Lect. Notes Phys. 925 (2016) 1 [arXiv:1701.01554] [INSPIRE].
J. Ghiglieri, A. Kurkela, M. Strickland and A. Vuorinen, Perturbative thermal QCD: formalism and applications, Phys. Rept. 880 (2020) 1 [arXiv:2002.10188] [INSPIRE].
A. Gynther and M. Vepsäläinen, Pressure of the standard model at high temperatures, JHEP 01 (2006) 060 [hep-ph/0510375] [INSPIRE].
A. Gynther and M. Vepsiiliiinen, Pressure of the standard model near the electroweak phase transition, JHEP 03 (2006) 011 [hep-ph/0512177] [INSPIRE].
M. Losada, High temperature dimensional reduction of the MSSM and other multiscalar models, Phys. Rev. D 56 (1997) 2893 [hep-ph/9605266] [INSPIRE].
M. Losada, The two loop finite temperature effective potential of the MSSM and baryogenesis, Nucl. Phys. B 537 (1999) 3 [hep-ph/9806519] [INSPIRE].
M. Laine and K. Rummukainen, The MSSM electroweak phase transition on the lattice, Nucl. Phys. B 535 (1998) 423 [hep-lat/9804019] [INSPIRE].
M. Laine, G. Nardini and K. Rummukainen, Lattice study of an electroweak phase transition at mh ~ 126 GeV, JCAP 01 (2013) 011 [arXiv:1211.7344] [INSPIRE].
J. O. Andersen, Dimensional reduction of the two Higgs doublet model at high temperature, Eur. Phys. J. C 11 (1999) 563 [hep-ph/9804280] [INSPIRE].
L. Niemi, H. H. Patel, M. J. Ramsey-Musolf, T. V. I. Tenkanen and D. J. Weir, Electroweak phase transition in the real triplet extension of the SM: dimensional reduction, Phys. Rev. D 100 (2019) 035002 [arXiv:1802.10500] [INSPIRE].
L. Niemi, M. Ramsey-Musolf, T. V. I. Tenkanen and D. J. Weir, Thermodynamics of a two-step electroweak phase transition, arXiv:2005.11332 [INSPIRE].
J. O. Andersen et al., Nonperturbative analysis of the electroweak phase transition in the two Higgs doublet model, Phys. Rev. Lett. 121 (2018) 191802 [arXiv:1711.09849] [INSPIRE].
T. Gorda, A. Helset, L. Niemi, T. V. I. Tenkanen and D. J. Weir, Three-dimensional effective theories for the two Higgs doublet model at high temperature, JHEP 02 (2019) 081 [arXiv:1802.05056] [INSPIRE].
A. D. Linde, Fate of the false vacuum at finite temperature: theory and applications, Phys. Lett. B 100 (1981) 37 [INSPIRE].
J. Garriga, Instantons for vacuum decay at finite temperature in the thin wall limit, Phys. Rev. D 49 (1994) 5497 [hep-th/9401020] [INSPIRE].
M. Laine, Exact relation of lattice and continuum parameters in three-dimensional SU(2) + Higgs theories, Nucl. Phys. B 451 (1995) 484 [hep-lat/9504001] [INSPIRE].
M. Laine and A. Rajantie, Lattice continuum relations for 3D SU(N) + Higgs theories, Nucl. Phys. B 513 (1998) 471 [hep-lat/9705003] [INSPIRE].
C.-X. Zhai and B. M. Kastening, The free energy of hot gauge theories with fermions through g5, Phys. Rev. D 52 (1995) 7232 [hep-ph/9507380] [INSPIRE].
M. Laine, P. Schicho and Y. Schröder, A QCD Debye mass in a broad temperature range, Phys. Rev. D 101 (2020) 023532 [arXiv:1911.09123] [INSPIRE].
M. Laine, The two loop effective potential of the 3D SU(2) Higgs model in a general covariant gauge, Phys. Lett. B 335 (1994) 173 [hep-ph/9406268] [INSPIRE].
J. Kripfganz, A. Laser and M. G. Schmidt, The high temperature two loop effective potential of the electroweak theory in a general ‘t Hooft background gauge, Phys. Lett. B 351 (1995) 266 [hep-ph/9501317] [INSPIRE].
E. J. Weinberg, Vacuum decay in theories with symmetry breaking by radiative corrections, Phys. Rev. D 47 (1993) 4614 [hep-ph/9211314] [INSPIRE].
W. Buchmüller, Z. Fodor, T. Helbig and D. Walliser, The weak electroweak phase transition, Annals Phys. 234 (1994) 260 [hep-ph/9303251] [INSPIRE].
M. Karjalainen and J. Peisa, Dimensionally reduced U(1) + Higgs theory in the broken phase, Z. Phys. C 76 (1997) 319 [hep-lat/9607023] [INSPIRE].
K. Kajantie, M. Laine, K. Rummukainen and M. E. Shaposhnikov, 3D SU(N) + adjoint Higgs theory and finite temperature QCD, Nucl. Phys. B 503 (1997) 357 [hep-ph/9704416] [INSPIRE].
G. D. Moore and K. Rummukainen, Electroweak bubble nucleation, nonperturbatively, Phys. Rev. D 63 (2001) 045002 [hep-ph/0009132] [INSPIRE].
M. Garny and T. Konstandin, On the gauge dependence of vacuum transitions at finite temperature, JHEP 07 (2012) 189 [arXiv:1205.3392] [INSPIRE].
M. Laine, Gauge dependence of the high temperature two loop effective potential for the Higgs field, Phys. Rev. D 51 (1995) 4525 [ hep-ph/9411252] [INSPIRE].
J. R. Espinosa, M. Garny and T. Konstandin, Interplay of infrared divergences and gauge-dependence of the effective potential, Phys. Rev. D 94 (2016) 055026 [arXiv:1607.08432] [INSPIRE].
N. K. Nielsen, On the gauge dependence of spontaneous symmetry breaking in gauge theories, Nucl. Phys. B 101 (1975) 173 [INSPIRE].
R. Fukuda and T. Kugo, Gauge invariance in the effective action and potential, Phys. Rev. D 13 (1976) 3469 [INSPIRE].
S. R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. 16 (1977) 1248] [INSPIRE].
A. Andreassen, D. Farhi, W. Frost and M. D. Schwartz, Direct approach to quantum tunneling, Phys. Rev. Lett. 117 (2016) 231601 [arXiv:1602.01102] [INSPIRE].
J. R. Espinosa, A fresh look at the calculation of tunneling actions, JCAP 07 (2018) 036 [arXiv:1805.03680] [INSPIRE].
J. R. Espinosa and T. Konstandin, A fresh look at the calculation of tunneling actions in multi-field potentials, JCAP 01 (2019) 051 [arXiv:1811.09185] [INSPIRE].
C. L. Wainwright, CosmoTransitions: computing cosmological phase transition temperatures and bubble profiles with multiple fields, Comput. Phys. Commun. 183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].
C. G. Callan, Jr. and S. R. Coleman, The fate of the false vacuum. 2. First quantum corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].
J. Baacke and G. Lavrelashvili, One loop corrections to the metastable vacuum decay, Phys. Rev. D 69 (2004) 025009 [hep-th/0307202] [INSPIRE].
G. V. Dunne and H. Min, Beyond the thin-wall approximation: precise numerical computation of prefactors in false vacuum decay, Phys. Rev. D 72 (2005) 125004 [hep-th/0511156] [INSPIRE].
H.-K. Guo, K. Sinha, D. Vagie and G. White, Phase transitions in an expanding universe: stochastic gravitational waves in standard and non-standard histories, JCAP 01 (2021) 001 [arXiv:2007.08537] [INSPIRE].
J. Ellis, M. Lewicki, J. M. No and V. Vaskonen, Gravitational wave energy budget in strongly supercooled phase transitions, JCAP 06 (2019) 024 [arXiv:1903.09642] [INSPIRE].
T. Appelquist and J. Carazzone, Infrared singularities and massive fields, Phys. Rev. D 11 (1975) 2856 [INSPIRE].
M. Laine and M. Losada, Two loop dimensional reduction and effective potential without temperature expansions, Nucl. Phys. B 582 (2000) 277 [hep-ph/0003111] [INSPIRE].
J. P. Blaizot, E. Iancu and A. Rebhan, On the apparent convergence of perturbative QCD at high temperature, Phys. Rev. D 68 (2003) 025011 [hep-ph/0303045] [INSPIRE].
M. Laine and Y. Schröder, Quark mass thresholds in QCD thermodynamics, Phys. Rev. D 73 (2006) 085009 [hep-ph/0603048] [INSPIRE].
M. Laine and K. Rummukainen, Higgs sector CP-violation at the electroweak phase transition, Nucl. Phys. B 545 (1999) 141 [hep-ph/9811369] [INSPIRE].
M. Laine and K. Rummukainen, Two Higgs doublet dynamics at the electroweak phase transition: a nonperturbative study, Nucl. Phys. B 597 (2001) 23 [hep-lat/0009025] [INSPIRE].
J. Langer, Metastable states, Physica 73 (1974) 61.
W. Buchmüller, T. Helbig and D. Walliser, First order phase transitions in scalar electrodynamics, Nucl. Phys. B 407 (1993) 387 [INSPIRE].
M. Gleiser, G. C. Marques and R. O. Ramos, On the evaluation of thermal corrections to false vacuum decay rates, Phys. Rev. D 48 (1993) 1571 [hep-ph/9304234] [INSPIRE].
M. G. Alford and J. March-Russell, Radiatively induced first order phase transitions: the necessity of the renormalization group, Nucl. Phys. B 417 (1994) 527 [hep-ph/9308364] [INSPIRE].
D. Bödeker, W. Buchmiiller, Z. Fodor and T. Helbig, Aspects of the cosmological electroweak phase transition, Nucl. Phys. B 423 (1994) 171 [hep-ph/9311346] [INSPIRE].
J. Berges, N. Tetradis and C. Wetterich, Coarse graining and first order phase transitions, Phys. Lett. B 393 (1997) 387 [hep-ph/9610354] [INSPIRE].
A. Surig, Selfconsistent treatment of bubble nucleation at the electroweak phase transition, Phys. Rev. D 57 (1998) 5049 [hep-ph/9706259] [INSPIRE].
A. Strumia and N. Tetradis, A consistent calculation of bubble nucleation rates, Nucl. Phys. B 542 (1999) 719 [hep-ph/9806453] [INSPIRE].
B. Garbrecht and P. Millington, Self-consistent solitons for vacuum decay in radiatively generated potentials, Phys. Rev. D 92 (2015) 125022 [arXiv:1509.08480] [INSPIRE].
A. Andreassen, W. Frost and M. D. Schwartz, Scale invariant instantons and the complete lifetime of the standard model, Phys. Rev. D 97 (2018) 056006 [arXiv:1707.08124] [INSPIRE].
G. D. Moore, K. Rummukainen and A. Tranberg, Nonperturbative computation of the bubble nucleation rate in the cubic anisotropy model, JHEP 04 (2001) 017 [hep-lat/0103036] [INSPIRE].
D. Croon, E. Hall and H. Muruyama, Non-perturbative methods for false vacuum decay, to appear.
D. Metaxas and E. J. Weinberg, Gauge independence of the bubble nucleation rate in theories with radiative symmetry breaking, Phys. Rev. D 53 (1996) 836 [hep-ph/9507381] [INSPIRE].
D. Metaxas, Derivative expansion and gauge independence of the false vacuum decay rate in various gauges, Phys. Rev. D 63 (2001) 085009 [hep-ph/0011015] [INSPIRE].
A. D. Plascencia and C. Tamarit , Convexity, gauge-dependence and tunneling rates, JHEP 10 (2016) 099 [arXiv:1510.07613] [INSPIRE].
J. S. Langer and L. A. Turski, Hydrodynamic model of the condensation of a vapor near its critical point, Phys. Rev. A 8 (1973) 3230.
M. E. Shaposhnikov, On nonperturbative effects at the high temperature electroweak phase transition, Phys. Lett. B 316 (1993) 112 [hep-ph/9306296] [INSPIRE].
K. Kajantie and M. Shaposhnikov, 3D physics and the electroweak phase transition: perturbation theory and lattice Monte Carlo analysis, in 1st International Conference on Strong and Electroweak Matter, (1994), pg. 1.
E. E. Jenkins, A. V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators I: formalism and λ dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].
E. E. Jenkins, A. V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators II: Yukawa dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].
R. Alonso, E. E. Jenkins, A. V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators III: gauge coupling dependence and phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].
P. B. Arnold, Phase transition temperatures at next-to-leading order, Phys. Rev. D 46 (1992) 2628 [hep-ph/9204228] [INSPIRE].
A. Andreassen, Gauge dependence of the quantum field theory effective potential, master’s thesis, Norwegian U. Sci. Tech., Trondheim, Norway (2013).
A. J. Andreassen, Precision tunneling rate calculations in quantum field theory and the ultimate fate of our universe, Ph.D. thesis, Harvard University, Cambridge, MA, U.S.A. (2018).
M. Sher, Electroweak Higgs potentials and vacuum stability, Phys. Rept. 179 (1989) 273 [INSPIRE].
P. Schicho, Multi-loop investigations of strong interactions at high temperatures, Ph.D. thesis, U. Bern, Bern, Switzerland (2020).
A. Alloul, N. D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
M. Vepsäläinen, Applications of dimensional reduction to electroweak and QCD matter, Ph.D. thesis, Helsinki U., Helsinki, Finland (2007) [arXiv:0709.2773] [INSPIRE].
P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279.
B. Ruijl, T. Ueda and J. Vermaseren, FORM version 4.2, arXiv:1707.06453 [INSPIRE].
M. Nishimura and Y. Schröder, IBP methods at finite temperature, JHEP 09 (2012) 051 [arXiv:1207.4042] [INSPIRE].
S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
P. B. Arnold and C.-X. Zhai, The three loop free energy for high temperature QED and QCD with fermions, Phys. Rev. D 51 (1995) 1906 [hep-ph/9410360] [INSPIRE].
A. Ekstedt and J. Löfgren, The high-temperature expansion of the thermal sunset, arXiv:2006.02179 [INSPIRE].
J. Österman, Evaluation of master integrals in thermal field theory, master’s thesis, University of Helsinki, Helsinki, Finland (2019).
I. Ghisoiu and Y. Schröder, A new method for taming tensor sum-integrals, JHEP 11 (2012) 010 [arXiv:1208.0284] [INSPIRE].
P. B. Arnold and C.-X. Zhai, The three loop free energy for pure gauge QCD, Phys. Rev. D 50 (1994) 7603 [hep-ph/9408276] [INSPIRE].
J. O. Andersen, E. Braaten and M. Strickland, The massive thermal basketball diagram, Phys. Rev. D 62 (2000) 045004 [hep-ph/0002048] [INSPIRE].
A. Vuorinen, The pressure of QCD at finite temperatures and chemical potentials, Phys. Rev. D 68 (2003) 054017 [hep-ph/0305183] [INSPIRE].
A. Gynther, M. Laine, Y. Schröder, C. Torrero and A. Vuorinen, Four-loop pressure of massless O(N) scalar field theory, JHEP 04 (2007) 094 [hep-ph/0703307] [INSPIRE].
J. O. Andersen, L. Kyllingstad and L. E. Leganger, Pressure to order g8 log g of massless ϕ4 theory at weak coupling, JHEP 08 (2009) 066 [arXiv:0903.4596] [INSPIRE].
Y. Schröder, A fresh look on three-loop sum-integrals, JHEP 08 (2012) 095 [arXiv:1207.5666] [INSPIRE].
J. Möller and Y. Schröder, Three-loop matching coefficients for hot QCD: reduction and gauge independence, JHEP 08 (2012) 025 [arXiv:1207.1309] [INSPIRE].
I. Ghisoiu and Y. Schröder, A new three-loop sum-integral of mass dimension two, JHEP 09 (2012) 016 [arXiv:1207.6214] [INSPIRE].
J. Zinn-Justin, Quantum field theory and critical phenomena, Int. Ser. Monogr. Phys. 113 (2002) 1.
B. S. DeWitt, The global approach to quantum field theory. Volume 1, 2, Int. Ser. Monogr. Phys. 114 (2003) 1.
P. B. Arnold and L. D. McLerran, Sphalerons, small fluctuations and baryon number violation in electroweak theory, Phys. Rev. D 36 (1987) 581 [INSPIRE].
A. Berera, J. Mabillard, B. W. Mintz and R. O. Ramos, Formulating the Kramers problem in field theory, Phys. Rev. D 100 (2019) 076005 [arXiv:1906.08684] [INSPIRE].
P. B. Arnold, D. Son and L. G. Yaffe, The hot baryon violation rate is \( O\left({\alpha}_W^5{T}^4\right) \), Phys. Rev. D 55 (1997) 6264 [hep-ph/9609481] [INSPIRE].
D. Bödeker, On the effective dynamics of soft non-Abelian gauge fields at finite temperature, Phys. Lett. B 426 (1998) 351 [hep-ph/9801430] [INSPIRE].
K. Kawasaki, Growth rate of critical nuclei near the critical point of a fluid, J. Statist. Phys. 12 (1975) 365.
J. Baacke and V. G. Kiselev, One loop corrections to the bubble nucleation rate at finite temperature, Phys. Rev. D 48 (1993) 5648 [hep-ph/9308273] [INSPIRE].
D. E. Brahm and C. L. Y. Lee, The exact critical bubble free energy and the effectiveness of effective potential approximations, Phys. Rev. D 49 (1994) 4094 [hep-ph/9311353] [INSPIRE].
L. Carson, X. Li, L. D. McLerran and R.-T. Wang, Exact computation of the small fluctuation determinant around a sphaleron, Phys. Rev. D 42 (1990) 2127 [INSPIRE].
J. Baacke and S. Junker, Quantum fluctuations around the electroweak sphaleron, Phys. Rev. D 49 (1994) 2055 [hep-ph/9308310] [INSPIRE].
J. Baacke and S. Junker, Quantum fluctuations of the electroweak sphaleron: erratum and addendum, Phys. Rev. D 50 (1994) 4227 [hep-th/9402078] [INSPIRE].
S. Chigusa, T. Moroi and Y. Shoji, State-of-the-art calculation of the decay rate of electroweak vacuum in the standard model, Phys. Rev. Lett. 119 (2017) 211801 [arXiv:1707.09301] [INSPIRE].
J. Kripfganz, A. Laser and M. G. Schmidt, Critical bubbles and fluctuations at the electroweak phase transition, Nucl. Phys. B 433 (1995) 467 [hep-ph/9405225] [INSPIRE].
A. I. Vainshtein, V. I. Zakharov, V. A. Novikov and M. A. Shifman, ABC’s of instantons, Sov. Phys. Usp. 25 (1982) 195 [Usp. Fiz. Nauk 136 (1982) 553] [INSPIRE].
G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].
N. J. Günther, D. A. Nicole and D. J. Wallace, Goldstone modes in vacuum decay and first order phase transitions, J. Phys. A 13 (1980) 1755 [INSPIRE].
J. Garriga, Nucleation rates in fiat and curved space, Phys. Rev. D 49 (1994) 6327 [hep-ph/9308280] [INSPIRE].
G. Münster and S. Rotsch, Analytical calculation of the nucleation rate for first order phase transitions beyond the thin wall approximation, Eur. Phys. J. C 12 (2000) 161 [cond-mat/9908246] [INSPIRE].
W. Buchmüller and T. Helbig, On the kinetics of the electroweak phase transition, in 15th International Warsaw Meeting on Elementary Particle Physics: quest for links to new physics, (1992), pg. 341.
M. E. Shaposhnikov, Baryon asymmetry of the universe in standard electroweak theory, Nucl. Phys. B 287 (1987) 757 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2009.10080
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Croon, D., Gould, O., Schicho, P. et al. Theoretical uncertainties for cosmological first-order phase transitions. J. High Energ. Phys. 2021, 55 (2021). https://doi.org/10.1007/JHEP04(2021)055
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP04(2021)055