Density forecasts of inflation: a quantile regression forest approach
Author
Suggested Citation
Note: 411196
Download full text from publisher
Other versions of this item:
- Lenza, Michele & Moutachaker, Inès & Paredes, Joan, 2023. "Density forecasts of inflation: a quantile regression forest approach," CEPR Discussion Papers 18298, C.E.P.R. Discussion Papers.
- M. Lenza & I. Moutachaker & I. Moutachaker, 2024. "Density forecasts of inflation : a quantile regression forest approach," Documents de Travail de l'Insee - INSEE Working Papers 2024-12, Institut National de la Statistique et des Etudes Economiques.
References listed on IDEAS
- Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2013.
"Time-varying combinations of predictive densities using nonlinear filtering,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 213-232.
- Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2012. "Time-varying Combinations of Predictive Densities using Nonlinear Filtering," Tinbergen Institute Discussion Papers 12-118/III, Tinbergen Institute.
- Barbara Rossi & Tatevik Sekhposyan, 2016.
"Forecast Rationality Tests in the Presence of Instabilities, with Applications to Federal Reserve and Survey Forecasts,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(3), pages 507-532, April.
- Barbara Rossi & Tatevik Sekhposyany, 2014. "Forecast Rationality Tests in the Presence of Instabilities, With Applications to Federal Reserve and Survey Forecasts," Working Papers 765, Barcelona School of Economics.
- Barbara Rossi & Tatevik Sekhposyan, 2014. "Forecast rationality tests in the presence of instabilities, with applications to Federal Reserve and survey forecasts," Economics Working Papers 1426, Department of Economics and Business, Universitat Pompeu Fabra, revised Nov 2014.
- Rossi, Barbara & Sekhposyan, Tatevik, 2016. "Forecast Rationality Tests in the Presence of Instabilities, With Applications to Federal Reserve and Survey Forecasts," CEPR Discussion Papers 11391, C.E.P.R. Discussion Papers.
- Engelberg, Joseph & Manski, Charles F. & Williams, Jared, 2009.
"Comparing the Point Predictions and Subjective Probability Distributions of Professional Forecasters,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 30-41.
- Joseph Engelberg & Charles F. Manski & Jared Williams, 2006. "Comparing the Point Predictions and Subjective Probability Distributions of Professional Forecasters," NBER Working Papers 11978, National Bureau of Economic Research, Inc.
- Raffaella Giacomini & Barbara Rossi, 2009.
"Detecting and Predicting Forecast Breakdowns,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(2), pages 669-705.
- Raffella Giacomini & Barbara Rossi, 2005. "Detecting and Predicting Forecast Breakdowns," UCLA Economics Working Papers 845, UCLA Department of Economics.
- Rossi, Barbara & Giacomini, Raffaella, 2006. "Detecting and Predicting Forecast Breakdowns," Working Papers 06-01, Duke University, Department of Economics.
- Giacomini, Raffaella & Rossi, Barbara, 2006. "Detecting and predicting forecast breakdowns," Working Paper Series 638, European Central Bank.
- Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016.
"Common Drifting Volatility in Large Bayesian VARs,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
- Andrea CARRIERO & Todd E. CLARK & Massimiliano MARCELLINO, 2012. "Common Drifting Volatility in Large Bayesian VARs," Economics Working Papers ECO2012/08, European University Institute.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2012. "Common Drifting Volatility in Large Bayesian VARs," CEPR Discussion Papers 8894, C.E.P.R. Discussion Papers.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Common drifting volatility in large Bayesian VARs," Working Papers (Old Series) 1206, Federal Reserve Bank of Cleveland.
- Ferrara, Laurent & Marcellino, Massimiliano & Mogliani, Matteo, 2015.
"Macroeconomic forecasting during the Great Recession: The return of non-linearity?,"
International Journal of Forecasting, Elsevier, vol. 31(3), pages 664-679.
- Ferrara, L. & Marcellino, M. & Mogliani, M., 2012. "Macroeconomic forecasting during the Great Recession: The return of non-linearity?," Working papers 383, Banque de France.
- Laurent Ferrara & Massimiliano Marcellino & Matteo Mogliani, 2015. "Macroeconomic forecasting during the Great Recession: the return of non-linearity?," Post-Print hal-01635951, HAL.
- Marcellino, Massimiliano & Ferrara, Laurent & Mogliani, Matteo, 2013. "Macroeconomic forecasting during the Great Recession: The return of non-linearity?," CEPR Discussion Papers 9313, C.E.P.R. Discussion Papers.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino, 2022.
"Forecasting US Inflation Using Bayesian Nonparametric Models,"
Papers
2202.13793, arXiv.org.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino, 2022. "Forecasting US Inflation Using Bayesian Nonparametric Models," Working Papers 22-05, Federal Reserve Bank of Cleveland.
- Clark, Todd & Huber, Florian & Koop, Gary & Marcellino, Massimiliano, 2023. "Forecasting US Inflation Using Bayesian Nonparametric Models," CEPR Discussion Papers 18244, C.E.P.R. Discussion Papers.
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Marta Bańbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92, January.
- Carmen Fernandez & Eduardo Ley & Mark F. J. Steel, 2001.
"Model uncertainty in cross-country growth regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(5), pages 563-576.
- Carmen Fernandez & Eduardo Ley & Mark Steel, 1999. "Model uncertainty in cross-country growth regressions," Econometrics 9903003, University Library of Munich, Germany, revised 06 Oct 2001.
- Carmen Fernandez & Eduardo Ley & Mark Steel, 2001. "Model uncertainty in cross-country growth regressions," Econometrics 0110002, University Library of Munich, Germany.
- Robert B. Litterman, 1979. "Techniques of forecasting using vector autoregressions," Working Papers 115, Federal Reserve Bank of Minneapolis.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Inoue, Atsushi, 2001. "Testing For Distributional Change In Time Series," Econometric Theory, Cambridge University Press, vol. 17(1), pages 156-187, February.
- González-Rivera, Gloria & Sun, Yingying, 2015.
"Generalized autocontours: Evaluation of multivariate density models,"
International Journal of Forecasting, Elsevier, vol. 31(3), pages 799-814.
- Gloria Gonzalez-Rivera & Yingying Sun, 2014. "Generalized Autocontours: Evaluation of Multivariate Density Models," Working Papers 201431, University of California at Riverside, Department of Economics.
- Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2014.
"Short-term inflation projections: A Bayesian vector autoregressive approach,"
International Journal of Forecasting, Elsevier, vol. 30(3), pages 635-644.
- Giannone, Domenico & Lenza, Michele & Onorante, Luca & Momferatou, Daphne, 2010. "Short-Term Inflation Projections: a Bayesian Vector Autoregressive approach," CEPR Discussion Papers 7746, C.E.P.R. Discussion Papers.
- Domenico Giannone & Michèle Lenza & Daphné Momferatu & Luca Onorante, 2010. "Short-term inflation projections: a Bayesian vector autoregressive approach," Working Papers ECARES ECARES 2010-011, ULB -- Universite Libre de Bruxelles.
- Ehrmann, Michael & Ferrucci, Gianluigi & Lenza, Michele & O'Brien, Derry, 2018. "Measures of underlying inflation for the euro area," Economic Bulletin Articles, European Central Bank, vol. 4.
- Stefan Wager & Susan Athey, 2018.
"Estimation and Inference of Heterogeneous Treatment Effects using Random Forests,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
- Wager, Stefan & Athey, Susan, 2017. "Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests," Research Papers 3576, Stanford University, Graduate School of Business.
- Ng, Serena, 2013. "Variable Selection in Predictive Regressions," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 752-789, Elsevier.
- Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
- Jonathan H. Wright, 2009.
"Forecasting US inflation by Bayesian model averaging,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 131-144.
- Jonathan H. Wright, 2003. "Forecasting U.S. inflation by Bayesian Model Averaging," International Finance Discussion Papers 780, Board of Governors of the Federal Reserve System (U.S.).
- Michele Lenza, 2011. "Revisiting the information content of core inflation," Research Bulletin, European Central Bank, vol. 14, pages 11-13.
- Kristin J. Forbes & Joseph E. Gagnon & Christopher G. Collins, 2022.
"Low Inflation Bends the Phillips Curve around the World,"
Revista Economía, Fondo Editorial - Pontificia Universidad Católica del Perú, vol. 45(89), pages 52-72.
- Kristin J. Forbes & Joseph E. Gagnon & Christopher G. Collins, 2020. "Low Inflation Bends the Phillips Curve around the World," Working Paper Series WP20-6, Peterson Institute for International Economics.
- Kristin Forbes & Joseph Gagnon & Christopher G. Collins, 2021. "Low Inflation Bends the Phillips Curve around the World," NBER Working Papers 29323, National Bureau of Economic Research, Inc.
- Forbes, Kristin & Gagnon, Joseph & Collins, Christopher, 2021. "Low Inflation Bends the Phillips Curve around the World," CEPR Discussion Papers 16583, C.E.P.R. Discussion Papers.
- Pierpaolo Benigno & Luca Antonio Ricci, 2011.
"The Inflation-Output Trade-Off with Downward Wage Rigidities,"
American Economic Review, American Economic Association, vol. 101(4), pages 1436-1466, June.
- Pierpaolo Benigno & Luca Antonio Ricci, 2010. "The Inflation-Output Trade-off with Downward Wage Rigidities," EIEF Working Papers Series 1020, Einaudi Institute for Economics and Finance (EIEF), revised Apr 2010.
- Pierpaolo Benigno & Luca Antonio Ricci, 2010. "The Inflation-Output Trade-off with Downward Wage Rigidities," NBER Working Papers 15762, National Bureau of Economic Research, Inc.
- Hong, Yongmiao & Li, Haitao & Zhao, Feng, 2007. "Can the random walk model be beaten in out-of-sample density forecasts? Evidence from intraday foreign exchange rates," Journal of Econometrics, Elsevier, vol. 141(2), pages 736-776, December.
- Jon Faust & Simon Gilchrist & Jonathan H. Wright & Egon Zakrajšsek, 2013.
"Credit Spreads as Predictors of Real-Time Economic Activity: A Bayesian Model-Averaging Approach,"
The Review of Economics and Statistics, MIT Press, vol. 95(5), pages 1501-1519, December.
- Jon Faust & Simon Gilchrist & Jonathan H. Wright & Egon Zakrajsek, 2011. "Credit Spreads as Predictors of Real-Time Economic Activity: A Bayesian Model-Averaging Approach," NBER Working Papers 16725, National Bureau of Economic Research, Inc.
- Jon Faust & Simon Gilchrist & Jonathan H. Wright & Egon Zakrajšek, 2012. "Credit spreads as predictors of real-time economic activity: a Bayesian Model-Averaging approach," Finance and Economics Discussion Series 2012-77, Board of Governors of the Federal Reserve System (U.S.).
- de Vincent-Humphreys, Rupert & Dimitrova, Ivelina & Falck, Elisabeth & Henkel, Lukas & Meyler, Aidan, 2019. "Twenty years of the ECB Survey of Professional Forecasters," Economic Bulletin Articles, European Central Bank, vol. 1.
- Valentina Corradi & Norman Swanson, 2006. "Predictive Density Evaluation. Revised," Departmental Working Papers 200621, Rutgers University, Department of Economics.
- Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
- Elena Bobeica & Marek Jarociński, 2019.
"Missing Disinflation and Missing Inflation: A VAR Perspective,"
International Journal of Central Banking, International Journal of Central Banking, vol. 15(1), pages 199-232, March.
- Jarociński, Marek & Bobeica, Elena, 2017. "Missing disinflation and missing inflation: the puzzles that aren't," Working Paper Series 2000, European Central Bank.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015.
"Prior Selection for Vector Autoregressions,"
The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," NBER Working Papers 18467, National Bureau of Economic Research, Inc.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2012. "Prior selection for vector autoregressions," Working Paper Series 1494, European Central Bank.
- Domenico Giannone & Michèle Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," Working Papers ECARES ECARES 2012-002, ULB -- Universite Libre de Bruxelles.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2012. "Prior Selection for Vector Autoregressions," CEPR Discussion Papers 8755, C.E.P.R. Discussion Papers.
- Harding, Martín & Lindé, Jesper & Trabandt, Mathias, 2022.
"Resolving the missing deflation puzzle,"
Journal of Monetary Economics, Elsevier, vol. 126(C), pages 15-34.
- Linde, Jesper & Trabandt, Mathias, 2019. "Resolving the Missing Deflation Puzzle," CEPR Discussion Papers 13690, C.E.P.R. Discussion Papers.
- Corradi, Valentina & Swanson, Norman R., 2006.
"Predictive Density Evaluation,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 5, pages 197-284,
Elsevier.
- Valentina Corradi & Norman Swanson, 2004. "Predictive Density Evaluation," Departmental Working Papers 200419, Rutgers University, Department of Economics.
- repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
- Sainan Jin & Liangjun Su & Aman Ullah, 2014. "Robustify Financial Time Series Forecasting with Bagging," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 575-605, August.
- Susan Athey & Mohsen Bayati & Guido Imbens & Zhaonan Qu, 2019.
"Ensemble Methods for Causal Effects in Panel Data Settings,"
AEA Papers and Proceedings, American Economic Association, vol. 109, pages 65-70, May.
- Susan Athey & Mohsen Bayati & Guido Imbens & Zhaonan Qu, 2019. "Ensemble Methods for Causal Effects in Panel Data Settings," NBER Working Papers 25675, National Bureau of Economic Research, Inc.
- Susan Athey & Mohsen Bayati & Guido Imbens & Zhaonan Qu, 2019. "Ensemble Methods for Causal Effects in Panel Data Settings," Papers 1903.10079, arXiv.org.
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Reichlin, Lucrezia & Giannone, Domenico & Banbura, Marta, 2007. "Bayesian VARs with Large Panels," CEPR Discussion Papers 6326, C.E.P.R. Discussion Papers.
- Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2008. "Large Bayesian VARs," Working Papers ECARES 2008_033, ULB -- Universite Libre de Bruxelles.
- Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
- Stephan Fahr & Frank Smets, 2010. "Downward Wage Rigidities and Optimal Monetary Policy in a Monetary Union," Scandinavian Journal of Economics, Wiley Blackwell, vol. 112(4), pages 812-840, December.
- Kristin J. Forbes & Joseph E. Gagnon & Christopher G. Collins, 2021. "Low inflation bends the Phillips curve around the world: Extended results," Working Paper Series WP21-15, Peterson Institute for International Economics.
- Wolf, Elias & Montes-Galdón, Carlos & Paredes, Joan, 2024. "Conditional density forecasting: a tempered importance sampling approach," VfS Annual Conference 2024 (Berlin): Upcoming Labor Market Challenges 302442, Verein für Socialpolitik / German Economic Association.
- Buckmann, Marcus & Joseph, Andreas, 2022. "An interpretable machine learning workflow with an application to economic forecasting," Bank of England working papers 984, Bank of England.
- Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
- James Costain & Anton Nakov & Borja Petit, 2022. "Flattening of the Phillips Curve with State-Dependent Prices and Wages," The Economic Journal, Royal Economic Society, vol. 132(642), pages 546-581.
- Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
- Marcelo C. Medeiros & Gabriel F. R. Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2021.
"Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 98-119, January.
- Marcelo Madeiros & Gabriel Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2019. "Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods," Working Papers Central Bank of Chile 834, Central Bank of Chile.
- Conflitti, Cristina & De Mol, Christine & Giannone, Domenico, 2015.
"Optimal combination of survey forecasts,"
International Journal of Forecasting, Elsevier, vol. 31(4), pages 1096-1103.
- Cristina Conflitti & Christine De Mol & Domenico Giannone, 2012. "Optimal Combination of Survey Forecasts," Working Papers ECARES ECARES 2012-023, ULB -- Universite Libre de Bruxelles.
- Giannone, Domenico & De Mol, Christine & Conflitti, Cristina, 2012. "Optimal Combination of Survey Forecasts," CEPR Discussion Papers 9096, C.E.P.R. Discussion Papers.
- Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
- Jushan Bai & Serena Ng, 2009. "Boosting diffusion indices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 607-629.
- Montes-Galdón, Carlos & Paredes, Joan & Wolf, Elias, 2022.
"Conditional density forecasting: a tempered importance sampling approach,"
Working Paper Series
2754, European Central Bank.
- Wolf, Elias & Montes-Galdón, Carlos & Paredes, Joan, 2024. "Conditional density forecasting: a tempered importance sampling approach," VfS Annual Conference 2024 (Berlin): Upcoming Labor Market Challenges 302442, Verein für Socialpolitik / German Economic Association.
- Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Working Papers 23-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Nov 2023.
- Philippe Goulet Coulombe & Karin Klieber & Christophe Barrette & Maximilian Goebel, 2024. "Maximally Forward-Looking Core Inflation," Papers 2404.05209, arXiv.org.
- Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Papers 2311.16333, arXiv.org, revised Apr 2024.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Raffaella Giacomini & Barbara Rossi, 2015.
"Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models,"
Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
- Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in nonstationary environments: What works and what doesn't in reduced-form and structural models," Economics Working Papers 1476, Department of Economics and Business, Universitat Pompeu Fabra.
- Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Working Papers 819, Barcelona School of Economics.
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Rossi, Barbara & Sekhposyan, Tatevik, 2019.
"Alternative tests for correct specification of conditional predictive densities,"
Journal of Econometrics, Elsevier, vol. 208(2), pages 638-657.
- Barbara Rossi & Tatevik Sekhposyan, 2014. "Alternative tests for correct specification of conditional predictive densities," Economics Working Papers 1416, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2017.
- Barbara Rossi & Tatevik Sekhposyan, 2015. "Alternative Tests for Correct Specification of Conditional Predictive Densities," Working Papers 758, Barcelona School of Economics.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021.
"Economic Predictions With Big Data: The Illusion of Sparsity,"
Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2017. "Economic Predictions with Big Data: The Illusion Of Sparsity," CEPR Discussion Papers 12256, C.E.P.R. Discussion Papers.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic Predictions with Big Data: The Illusion of Sparsity," Liberty Street Economics 20180521, Federal Reserve Bank of New York.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2021. "Economic predictions with big data: the illusion of sparsity," Working Paper Series 2542, European Central Bank.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic predictions with big data: the illusion of sparsity," Staff Reports 847, Federal Reserve Bank of New York.
- Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
- Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
- Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024.
"Bayesian forecasting in economics and finance: A modern review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
- Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
- Bańbura, Marta & Brenna, Federica & Paredes, Joan & Ravazzolo, Francesco, 2021. "Combining Bayesian VARs with survey density forecasts: does it pay off?," Working Paper Series 2543, European Central Bank.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023.
"Tail Forecasting With Multivariate Bayesian Additive Regression Trees,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2021. "Tail Forecasting with Multivariate Bayesian Additive Regression Trees," Working Papers 21-08R, Federal Reserve Bank of Cleveland, revised 12 Jul 2022.
- Clark, Todd & Huber, Florian & Koop, Gary & Marcellino, Massimiliano & Pfarrhofer, Michael, 2022. "Tail Forecasting with Multivariate Bayesian Additive Regression Trees," CEPR Discussion Papers 17461, C.E.P.R. Discussion Papers.
- Berg, Tim O. & Henzel, Steffen R., 2015.
"Point and density forecasts for the euro area using Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
- Berg, Tim Oliver & Henzel, Steffen, 2013. "Point and Density Forecasts for the Euro Area Using Many Predictors: Are Large BVARs Really Superior?," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79783, Verein für Socialpolitik / German Economic Association.
- Tim Oliver Berg & Steffen Henzel, 2013. "Point and Density Forecasts for the Euro Area Using Many Predictors: Are Large BVARs Really Superior?," ifo Working Paper Series 155, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Tim Oliver Berg & Steffen Henzel, 2014. "Point and Density Forecasts for the Euro Area Using Bayesian VARs," CESifo Working Paper Series 4711, CESifo.
- Angela Capolongo & Claudia Pacella, 2021.
"Forecasting inflation in the euro area: countries matter!,"
Empirical Economics, Springer, vol. 61(5), pages 2477-2499, November.
- Angela Capolongo & Claudia Pacella, 2019. "Forecasting inflation in the euro area: countries matter!," Temi di discussione (Economic working papers) 1224, Bank of Italy, Economic Research and International Relations Area.
- Marcus P. A. Cobb, 2020. "Aggregate density forecasting from disaggregate components using Bayesian VARs," Empirical Economics, Springer, vol. 58(1), pages 287-312, January.
- Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015.
"Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections,"
International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
- Giannone, Domenico & Bańbura, Marta & Lenza, Michele, 2014. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," Working Paper Series 1733, European Central Bank.
- Giannone, Domenico & Banbura, Marta & Lenza, Michele, 2014. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," CEPR Discussion Papers 9931, C.E.P.R. Discussion Papers.
- Martha Banbura & Domenico Giannone & Michèle Lenza, 2014. "Conditional Forecasts and Scenario Analysis with Vector Autoregressions for Large Cross-Sections," Working Papers ECARES ECARES 2014-15, ULB -- Universite Libre de Bruxelles.
- Chalmovianský, Jakub & Porqueddu, Mario & Sokol, Andrej, 2020. "Weigh(t)ing the basket: aggregate and component-based inflation forecasts for the euro area," Working Paper Series 2501, European Central Bank.
- Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018.
"Bayesian Vector Autoregressions,"
The Warwick Economics Research Paper Series (TWERPS)
1159, University of Warwick, Department of Economics.
- Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian vector autoregressions," LSE Research Online Documents on Economics 87393, London School of Economics and Political Science, LSE Library.
- Silvia Miranda Agrippino & Giovanni Ricco, 2018. "Bayesian vector autoregressions," Working Papers hal-03458277, HAL.
- Silvia Miranda-Agrippino & Giovanni Ricco, 2018. "Bayesian Vector Autoregressions," Discussion Papers 1808, Centre for Macroeconomics (CFM).
- Silvia Miranda Agrippino & Giovanni Ricco, 2018. "Bayesian vector autoregressions," SciencePo Working papers Main hal-03458277, HAL.
- Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian vector autoregressions," Bank of England working papers 756, Bank of England.
- Silvia Miranda-Agrippino & Giovanni Ricco, 2018. "Bayesian vector autoregressions," Documents de Travail de l'OFCE 2018-18, Observatoire Francais des Conjonctures Economiques (OFCE).
- Warne, Anders, 2023. "DSGE model forecasting: rational expectations vs. adaptive learning," Working Paper Series 2768, European Central Bank.
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
- Rossi, Barbara, 2013.
"Advances in Forecasting under Instability,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324,
Elsevier.
- Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
- Warne, Anders & Coenen, Günter & Christoffel, Kai, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.
More about this item
Keywords
Inflation; Non-linearity; Quantile Regression Forest;All these keywords.
JEL classification:
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BAN-2023-08-14 (Banking)
- NEP-BIG-2023-08-14 (Big Data)
- NEP-CBA-2023-08-14 (Central Banking)
- NEP-EEC-2023-08-14 (European Economics)
- NEP-MON-2023-08-14 (Monetary Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:20232830. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Official Publications (email available below). General contact details of provider: https://edirc.repec.org/data/emieude.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.