(This abstract was borrowed from another version of this item.)"> (This abstract was borrowed from another version of this item.)">
Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/bie/wpaper/262.html
   My bibliography  Save this paper

Nucleoli as maximizers of collective satisfaction functions

Author

Listed:
  • Sudhölter, Peter

    (Center for Mathematical Economics, Bielefeld University)

  • Peleg, Bezalel

    (Center for Mathematical Economics, Bielefeld University)

Abstract
Two preimputations of a given TU game can be compared via the Lorenz order applied to the vectors of satisfactions. One preimputation is `socially more desirable' than the other, if its corresponding vector of satisfactions Lorenz dominates the satisfaction vector with respect to the second preimputation. It is shown that the prenucleolus, the anti-prenucleolus, and the modified nucleolus are maximal in this Lorenz order. Here the modified nucleolus is the unique preimputation which lexicographically minimizes the envies between the coalitions, i.e. the differences of excesses. Recently SudhÃlter developed this solution concept. Properties of the set of all undominated preimputations, the maximal satisfaction solution, are discussed. A function on the set of preimputations is called collective satisfaction function if it respects the Lorenz order. We prove that both classical nucleoli are unique minimizers of certain `weighted Gini inequality indices', which are derived from some collective satisfaction functions. For the (pre)nucleolus the function proposed by Kohlberg, who characterized the nucleolus as a solution of a single minimization problem, can be chosen. Finally, a collective satisfaction function is defined such that the modified nucleolus is its unique maximizer.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Sudhölter, Peter & Peleg, Bezalel, 2017. "Nucleoli as maximizers of collective satisfaction functions," Center for Mathematical Economics Working Papers 262, Center for Mathematical Economics, Bielefeld University.
  • Handle: RePEc:bie:wpaper:262
    as

    Download full text from publisher

    File URL: https://pub.uni-bielefeld.de/download/2909812/2910311
    File Function: First Version, 1996
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guni Orshan & Peter Sudhölter, 2010. "The positive core of a cooperative game," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(1), pages 113-136, March.
    2. Natalia I. Naumova, 2022. "Some solutions for generalized games with restricted cooperation," Annals of Operations Research, Springer, vol. 318(2), pages 1077-1093, November.
    3. Palestini, Arsen & Pignataro, Giuseppe, 2016. "A graph-based approach to inequality assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 65-78.
    4. Arin Aguirre, Francisco Javier, 2003. "Egalitarian distributions in coalitional models: The Lorenz criterion," IKERLANAK 6503, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bettina Weingarten (email available below). General contact details of provider: https://edirc.repec.org/data/imbiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.