Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpfi/0409002.html
   My bibliography  Save this paper

The Volatility of the Instantaneous Spot Interest Rate Implied by Arbitrage Pricing - A Dynamic Bayesian Approach

Author

Listed:
  • Ram Bhar

    (School of Banking & Finance, University of New South Wales)

  • Carl Chiarella

    (School of Finance & Economics, University of Technology, Sydney)

  • Hing Hung

    (School of Finance & Economics, University of Technology, Sydney)

  • Wolfgang Runggaldier

    (Dipartimento di Matematica Pura ed Applicata, Universit´a di Padova)

Abstract
This paper considers the estimation of the volatility of the instantaneous short interest rate from a new perspective. Rather than using discretely compounded market rates as a proxy for the instantaneous short rate of interest, we derive a relationship between observed LIBOR rates and certain unobserved instantaneous forward rates. We determine the stochastic dynamics for these rates under the risk- neutral measure and propose a filtering estimation algorithm for a time- discretised version of the resulting interest rate dynamics based on dynamic Bayesian updating. The method is applied to US Treasury rates of various maturities and is found to give a reasonable model fit.

Suggested Citation

  • Ram Bhar & Carl Chiarella & Hing Hung & Wolfgang Runggaldier, 2004. "The Volatility of the Instantaneous Spot Interest Rate Implied by Arbitrage Pricing - A Dynamic Bayesian Approach," Finance 0409002, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpfi:0409002
    Note: Type of Document - pdf; pages: 29
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/fin/papers/0409/0409002.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Licheng Sun, 2003. "Nonlinear Drift And Stochastic Volatility: An Empirical Investigation Of Short‐Term Interest Rate Models," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 26(3), pages 389-404, September.
    2. R. Bhar & C. Chiarella, 1997. "Transformation of Heath?Jarrow?Morton models to Markovian systems," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 1-26, March.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. K. Ben Nowman, 1998. "Continuous-time short term interest rate models," Applied Financial Economics, Taylor & Francis Journals, vol. 8(4), pages 401-407.
    5. Brenner, Robin J. & Harjes, Richard H. & Kroner, Kenneth F., 1996. "Another Look at Models of the Short-Term Interest Rate," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(1), pages 85-107, March.
    6. Ram Bhar & Carl Chiarella & Wolfgang Runggaldier, 2001. "Estimation in Models of the Instantaneous Short Term Interest Rate By Use of a Dynamic Bayesian Algorithm," Research Paper Series 68, Quantitative Finance Research Centre, University of Technology, Sydney.
    7. Chapman, David A & Long, John B, Jr & Pearson, Neil D, 1999. "Using Proxies for the Short Rate: When Are Three Months Like an Instant?," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 763-806.
    8. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    9. Nowman, K B, 1997. "Gaussian Estimation of Single-Factor Continuous Time Models of the Term Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 52(4), pages 1695-1706, September.
    10. Peter Ritchken & L. Sankarasubramanian, 1995. "Volatility Structures Of Forward Rates And The Dynamics Of The Term Structure1," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 55-72, January.
    11. Carl Chiarella & Sara Pasquali & Wolfgang J. Runggaldier, 2001. "On Filtering in Markovian Term Structure Models," World Scientific Book Chapters, in: Jiongmin Yong (ed.), Recent Developments In Mathematical Finance, chapter 12, pages 139-150, World Scientific Publishing Co. Pte. Ltd..
    12. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
    13. Kees G. Koedijk & François G. J. A. Nissen & Peter C. Schotman & Christian C. P. Wolff, 1997. "The Dynamics of Short-Term Interest Rate Volatility Reconsidered," Review of Finance, European Finance Association, vol. 1(1), pages 105-130.
    14. Carl Chiarella & Oh Kwon, 2003. "Finite Dimensional Affine Realisations of HJM Models in Terms of Forward Rates and Yields," Review of Derivatives Research, Springer, vol. 6(2), pages 129-155, May.
    15. Carl Chiarella & Sara Pasquali & Wolfgang Runggaldier, 2001. "On Filtering in Markovian Term Structure Models (An Approximation Approach)," Research Paper Series 65, Quantitative Finance Research Centre, University of Technology, Sydney.
    16. Klaus Sandmann & Dieter Sondermann, 1997. "A Note on the Stability of Lognormal Interest Rate Models and the Pricing of Eurodollar Futures," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 119-125, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiarella, Carl & Hung, Hing & T, Thuy-Duong, 2009. "The volatility structure of the fixed income market under the HJM framework: A nonlinear filtering approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2075-2088, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ram Bhar & Carl Chiarella & Wolfgang Runggaldier, 2001. "Estimation in Models of the Instantaneous Short Term Interest Rate By Use of a Dynamic Bayesian Algorithm," Research Paper Series 68, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Mahdavi, Mahnaz, 2008. "A comparison of international short-term rates under no arbitrage condition," Global Finance Journal, Elsevier, vol. 18(3), pages 303-318.
    3. Episcopos, Athanasios, 2000. "Further evidence on alternative continuous time models of the short-term interest rate," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 10(2), pages 199-212, June.
    4. Christiansen, Charlotte, 2008. "Level-ARCH short rate models with regime switching: Bivariate modeling of US and European short rates," International Review of Financial Analysis, Elsevier, vol. 17(5), pages 925-948, December.
    5. Kalimipalli, Madhu & Susmel, Raul, 2004. "Regime-switching stochastic volatility and short-term interest rates," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 309-329, June.
    6. V. Cvsa & P. Ritchken, 2001. "Pricing Claims Under GARCH-Level Dependent Interest Rate Processes," Management Science, INFORMS, vol. 47(12), pages 1693-1711, December.
    7. Jin-Chuan Duan & Kris Jacobs, 2001. "Short and Long Memory in Equilibrium Interest Rate Dynamics," CIRANO Working Papers 2001s-22, CIRANO.
    8. Duan, Jin-Chuan & Jacobs, Kris, 2008. "Is long memory necessary? An empirical investigation of nonnegative interest rate processes," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 567-581, June.
    9. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, March.
    10. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005, January-A.
    11. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    12. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    13. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    14. repec:wyi:journl:002108 is not listed on IDEAS
    15. Anders B. Trolle & Eduardo S. Schwartz, 2009. "A General Stochastic Volatility Model for the Pricing of Interest Rate Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 2007-2057, May.
    16. Al-Zoubi, Haitham A., 2009. "Short-term spot rate models with nonparametric deterministic drift," The Quarterly Review of Economics and Finance, Elsevier, vol. 49(3), pages 731-747, August.
    17. Diether Beuermann & Antonios Antoniou & Alejandro Bernales, 2005. "The Dynamics of the Short-Term Interest Rate in the UK," Finance 0512029, University Library of Munich, Germany.
    18. Paulo M. M. Rodrigues & Antonio Rubia, 2004. "On the Small Sample Properties of Dickey Fuller and Maximum Likelihood Unit Root Tests on Discrete-Sampled Short-Term Interest Rates," Econometrics 0405004, University Library of Munich, Germany.
    19. Driffill, John & Sola, Martin & Kenc, Turalay & Spagnolo, Fabio, 2004. "On Model Selection and Markov Switching: A Empirical Examination of Term Structure Models with Regime Shifts," CEPR Discussion Papers 4165, C.E.P.R. Discussion Papers.
    20. Cortazar, Gonzalo & Schwartz, Eduardo S. & Naranjo, Lorezo, 2003. "Term Structure Estimation in Low-Frequency Transaction Markets: A Kalman Filter Approach with Incomplete Panel-Data," University of California at Los Angeles, Anderson Graduate School of Management qt56h775cz, Anderson Graduate School of Management, UCLA.
    21. Jun Yu & Peter C.B. Phillips, 2001. "Gaussian Estimation of Continuous Time Models of the Short Term Interest Rate," Cowles Foundation Discussion Papers 1309, Cowles Foundation for Research in Economics, Yale University.

    More about this item

    JEL classification:

    • G - Financial Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0409002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.